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Summary 14 

Modern neuroscience has seen the rise of a population-doctrine that represents cognitive 15 
variables using geometrical structures in activity space. Representational geometry does not, 16 
however, account for how individual neurons implement these representations. Here, 17 
leveraging the principle of sparse coding, we present a framework to dissect representational 18 
geometry into biologically interpretable components that retain links to single neurons. Applied 19 
to extracellular recordings from the primate prefrontal cortex in a working memory task with 20 
interference, the identified components revealed disentangled and sequential memory 21 
representations including the recovery of memory content after distraction, signals hidden to 22 
conventional analyses. Each component was contributed by small subpopulations of neurons 23 
with distinct electrophysiological properties and response dynamics. Modelling showed that 24 
such sparse implementations are supported by recurrently connected circuits as in prefrontal 25 
cortex. The perspective of neuronal implementation links representational geometries to their 26 
cellular constituents, providing mechanistic insights into how neural systems encode and 27 
process information. 28 
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Introduction 47 

For decades, the dominant approach to understanding neural systems has been to 48 
characterize the role and contributions of individual neurons. In a recent paradigm shift, the 49 
concept of high-dimensional activity spaces that represent cognitive and other variables at the 50 
level of neuronal populations has taken the center stage and sidelined the single-neuron 51 
perspective (Barack & Krakauer, 2021; Saxena & Cunningham, 2019). These population 52 
representations capture multi-neuron activity in different behavioral task conditions in the form 53 
of geometrical structures (Bernardi et al., 2020; Okazawa et al., 2021). Representational 54 
geometry provides a complete description of the information encoded by and processed in a 55 
neuronal population. It does not, however, account for how individual neurons – the nuts and 56 
bolts of brain processing – give rise to the representations and the operations performed on 57 
them (Kriegeskorte & Wei, 2021) because there is no direct connection between informational 58 
representation and biological implementation at the cellular and circuit level. 59 

In constructing representational geometries, the choice of coordinate system, that is the set 60 
of components that capture the population activity, is arbitrary. The question then arises what 61 
the most meaningful coordinate system is to represent the data. In principal component 62 
analysis (PCA), a widely used method for dimensionality reduction, the principal components 63 
(PCs) capture the neuronal activity's variance, but they are not designed to yield biologically 64 
interpretable aspects of the representational geometry. Identifying coordinate systems that 65 
are rooted in biology is particularly relevant in association cortices where neurons often have 66 
mixed-selective responses that are not easily interpreted as the representation of any single 67 
stimulus or task variable alone (Bernardi et al., 2020; Rigotti et al., 2013). Neuronal signals in 68 
association cortices also show complex temporal dynamics and task-dependent modulations 69 
that reflect distinct sensory and memory processing stages (Cavanagh et al., 2018; Jacob et 70 
al., 2018; Jacob & Nieder, 2014). During working memory, for example, behaviorally relevant 71 
target items are maintained in online storage and must be protected against interfering 72 
distractors (Jacob et al., 2018; Jacob & Nieder, 2014). However, depending on which 73 
coordinate system is used to express the representational geometry, the same task-related 74 
neuronal activity could be interpreted in one of two ways: either as components representing 75 
the target in each task epoch individually, suggesting a memory mechanism built on sequential 76 
relay of target information among components (Parthasarathy et al., 2019), or, alternatively, 77 
as components that represent the target across task epochs, suggesting a memory 78 
mechanism of continuous representation of target information by the same components (Tang 79 
et al., 2020). 80 

The biological implementation of representations points to how components are accessed and 81 
information is communicated. Unlike the units in neuronal network models, in vivo neurons 82 
are subject to anatomical and physiological constraints. There are approximately 1010 neurons 83 
in the human brain and 109 in a hypothetical functional module such as the dorsolateral 84 
prefrontal cortex (PFC) (Courchesne et al., 2011; Herculano-Houzel et al., 2015). A pyramidal 85 
cortical neuron has on the order of 104 dendritic spines (Eyal et al., 2018). Thus, given the 86 
disproportion between the low number of possible connections and the large number of 87 
potentially informative neurons, a neuron downstream of the PFC can only 'read out' from a 88 
small fraction of neurons in this region. That is, it cannot access arbitrary components of the 89 
representational geometry. Instead, it would be more efficient and biologically plausible to read 90 
out components that a few neurons predominantly contribute to, that is the components with 91 
a sparse neuronal implementation. 92 
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Here, we present a framework that exploits the structure in the representational geometry's 93 
neuronal implementation. We show that this approach yields unbiased components of 94 
population activity that retain links to individual neurons. We performed data dimensionality 95 
reduction on extracellular multi-channel recordings from the non-human primate PFC by 96 
leveraging sparsity constraints in order to identify components that are contributed mainly by 97 
small subpopulations of strongly coding neurons (sparse component analysis, SCA; Georgiev 98 
et al., 2007; Olshausen & Field, 1996). We found that the activities on these components 99 
nontrivially matched the working memory task sequence performed by the animals, revealing 100 
separate sensory and memory components including a previously hidden component, namely 101 
the recovery of memory content after distraction. Notably, each component was made up of 102 
non-overlapping subpopulations of neurons with distinct electrophysiological properties and 103 
temporal dynamics. Finally, neuronal network modelling showed that recurrent connectivity as 104 
in the PFC favors such sparse implementations over non-structured Gaussian 105 
implementations. The framework and findings presented here bridge the gap between the 106 
single-neuron doctrine and the neuronal population doctrine (Barack & Krakauer, 2021; 107 
Saxena & Cunningham, 2019) and establish the perspective of neuronal implementation as 108 
an important complement to representational geometry.  109 
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Results 110 

Different neuronal implementations may underlie the same representational geometry 111 

Representational geometry abstracts the information coded by a population of neurons from 112 
their individual tuning profiles (Kriegeskorte & Wei, 2021). It specifies the pairwise distances 113 
between task-related collective neuronal responses, but no longer reflects the exact pattern 114 
of firing rates. This approach defines a stimulus-representing subspace. To illustrate, the 115 
representations for two stimuli A and B in PC space separate, rotate and collapse back to the 116 
origin (Fig. 1a). 117 

The same stimulus-representing subspace can be defined with arbitrary sets of components. 118 
Components can be chosen to capture specific aspects of the representation, e.g., to 119 
continuously distinguish between stimuli (Fig. 1b), or to distinguish between stimuli at different 120 
time points (Fig. 1c). Note that in the former example, the components align with the PCs, 121 
while in the latter they do not. Various studies have followed this approach, selecting the 122 
components e.g. such that they express representations sequentially (Aoi et al., 2020) or such 123 
that they each correspond to a particular task variable of interest (Libby & Buschman, 2021; 124 
Mante et al., 2013). 125 

Neuronal activity can be reconstructed by the weighted sum of components. Every neuron 126 
has a set of weights quantifying its relation to the different components, i.e. its loadings on the 127 
components. The loadings of neurons on the PCs visualize their positions in implementation 128 
space (Fig. 1d-f), where the loadings along any axis correspond to a component in 129 
representation space with the same orientation (Fig. 1a-c). The structure in the 130 
implementation space, i.e., the distribution of loadings across neurons, can be exploited to 131 
identify a unique, non-arbitrary set of components that emphasizes biological plausibility of 132 
stimulus coding over enforcing possibly unjustified priors. 133 

Representational geometry is invariant to the rotation of neuronal coordinates (Kornblith et al., 134 
2019). Different neuronal implementations may therefore underlie the same representational 135 
geometry. We first consider the scenario of a Gaussian (dense) distribution of loadings 136 
(Fig. 1d), where the standardized moments (e.g., skewness and kurtosis) are constant, 137 
meaning there are no differences in these distributional statistics across axis orientations. We 138 
define the sparsity index (SI; Fig. 1d, top inset) to denote the sparsity of the implementation 139 
along a given axis. SI is proportional to a distribution's kurtosis. If SI is constant across axis 140 
orientations, neurons do not preferentially align to any axes. 141 

Next, we consider a sparse distribution (Fig. 1e). Most neurons lie around the origin of the 142 
coordinate system. However, because SI is not constant (Fig. 1e, top inset), we can find the 143 
sparse components that strongly coding neurons align to. In the present case, these sparse 144 
axes correspond to the components in representational space that code the difference 145 
between stimulus A and B continuously (with one of the components reversing between 146 
epochs; compare Fig. 1e with Fig. 1b). Importantly, sparse distributions can exist for arbitrary 147 
axis orientations. For example, strongly coding neurons could align to the components that 148 
sequentially represent the stimulus information at time point 1 and time point 2 (compare 149 
Fig. 1f with Fig. 1c). 150 

Although both scenarios are characterized by sparse neuronal implementations, we note that 151 
they have fundamentally different implications for readout, lending particular importance to the 152 
positioning of sparse axes orientations. Continuous readout (Fig. 1b and e, component 1) is 153 
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stable, but not optimized for either time point 1 or time point 2, whereas sequential readouts 154 
(Fig. 1c and 1f) are more precise at the respective time points, but not stable across time 155 
points. 156 

In summary, the perspective of neuronal implementation offers a way to connect 157 
representational geometries to their cellular constituents, revealing mechanistic insights into 158 
how a neural system encodes, processes and relays information. 159 

The neuronal implementation of working memory 160 

With this framework, we now examine neuronal implementation of working memory, a core 161 
cognitive function for online maintenance and manipulation of information in the absence of 162 
sensory inputs. Extracellular multi-channel recordings were performed in the lateral PFC of 163 
two monkeys trained on a delayed-match-to-numerosity task, requiring them to memorize the 164 
number of dots (i.e., numerosity) in a visually presented sample and resist an interfering 165 
distracting numerosity (Jacob and Nieder, 2014) (Fig. 2a). A total of 467 single units recorded 166 
across 78 sessions were included in the analysis. Spike rates were binned, averaged across 167 
conditions of the same type and demixed into their constituent parts (Fig. 2b) (Kobak et al., 168 
2016). Because the task design was balanced (i.e., all sample-distractor combinations were 169 
included), the different task variables were statistically independent of each other. Demixing 170 
therefore allowed to isolate and analyze signal components that would otherwise be 171 
overshadowed by signals that dominate the raw firing rates. Across neurons, the neuronal 172 
activities coding for trial time, sample numerosity, distractor numerosity and the sample-173 
distractor interaction accounted for 72.7 %, 8.7 %, 5.8 % and 12.9 % of the total variance, 174 
respectively (Fig. 2b).  175 

We first focused on the representation of the sample numerosity throughout the trial, the 176 
crucial function for completing the task (Fig. 2c). In PC space, the representations of different 177 
numerosities (1 and 4 visualized here) started to separate, marking an increase of the 178 
information during sample presentation. Then the representations rotated and returned to the 179 
origin. Similar representational changes have been reported previously (Elsayed & 180 
Cunningham, 2017; Murray et al., 2017; Parthasarathy et al., 2019). 181 

The distribution of loadings of individual neurons onto the first three PCs was highly non-182 
Gaussian (p < 0.001; Henze-Zirkler multivariate normality test; Fig. 2d). Accordingly, the 183 
sparsity index (SI) was not uniform across all axis orientations (Fig. 2d). Using sparse 184 
component analysis (SCA) that identifies components with sparse distributions of neuronal 185 
loadings (sparse components, SCs), we found three SCs that optimally decomposed the 186 
sample numerosities' representational geometry. The SCs displayed temporally well-defined 187 
active periods that matched the task structure and tiled the duration of a trial (Fig. 2e). 188 
Intuitively, they correspond to components for sensory encoding, memory maintenance and 189 
memory recovery following distraction, in accord with the scenario of sequential 190 
representations (cp. to Fig. 1c and f). 191 

To control for the possibility that noise in non-sparse implementations is mistaken for structure 192 
by SCA, we created substitute datasets with random Gaussian implementations (i.e., 193 
Gaussian distributions of neuronal loadings) while keeping the representational geometry 194 
intact and then systematically compared the original SCs with the substitute SCs (example 195 
substitute SCs in Fig. 2f). First, the sparsity parameter b (fit to the distribution of loadings on 196 
the SCs) was smaller for all three original SCs than for the substitutes (p < 0.001 for all three 197 
SCs; permutation test with n = 3×1000 permutations; Fig. 2g), confirming the presence of 198 
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structure in the implementation. Second, the activities on the SCs showed temporally 199 
restricted sample representations with shorter spread (p < 0.002; permutation test with 200 
n = 1000 permutations; same as for Fig. 2i-k; Fig. 2h), less temporal overlap with other SCs 201 
(p < 0.003; Fig. 2i), and less reversal of sample numerosity tuning (p < 0.030; Fig. 2j) than 202 
the substitutes, suggesting that the observed SC activity was more sequential than to be 203 
expected with a random implementation. Third and finally, the SCs were closer to orthogonal 204 
than the substitutes (p < 0.019; Fig. 2k), demonstrating that the observed implementation is 205 
more efficient than a random implementation. 206 

In summary, the neuronal implementation of the sample numerosities' representational 207 
geometry was structured and sparse. The activities on the sparse components demonstrated 208 
sequential rather than continuous coding of working memory content, indicating that the 209 
change of behavioral demands in the course of the trial triggers a switching of informative 210 
subpopulations. 211 

The effect of distraction on sample numerosity representations 212 

The lack of a component that continuously represented the behaviorally relevant sample 213 
numerosity throughout the trial was unexpected. We therefore investigated the influence of 214 
distraction on sample number coding. 215 

First, we applied SCA to the demixed distractor coding part of the data (Fig. 3a, top). Two SCs 216 
were obtained that were sequentially active during presentation and maintenance of the 217 
distractor numerosity, respectively (Fig. 3a, bottom). These components resembled the 218 
sensory and memory sample coding SCs (cp. to Fig. 2e), suggesting that target and 219 
distracting information initially occupied similar resources despite their distinct behavioral 220 
relevance. Supporting this hypothesis, we found strongly overlapping neuronal loadings 221 
between sample SCs and distractor SCs (cosine similarity; 0.69 and 0.57 for the sensory and 222 
memory components, respectively; Fig. 3b) with displacement of sample information by 223 
distractor information as the trial evolved (Fig. S1a, top and middle). However, in contrast to 224 
the sample sensory and memory components, the sample recovery SC was unique and did 225 
not share loadings with any other SC (Fig. 3b). Furthermore, the sample recovery SC was not 226 
influenced by distractor information and carried sample information until test numerosity 227 
presentation (Fig. S1a, bottom). To correctly complete a trial, more activity in the sample 228 
sensory and recovery SCs was required when the trial contained a distractor than when a trial 229 
without a distractor was presented (Fig. S1b). Conversely, distractors led to reduced sample 230 
activity in the memory component. 231 

Second, we applied SCA to the sample-distractor interaction part of the data. One SC was 232 
identified. Its activity was most pronounced when the sample and distractor numerosity were 233 
the same (Fig. S2). The neuronal loadings on this SC did not overlap with the loadings on 234 
sample or distractor SCs (Fig. 3b), suggesting that the boost in numerosity information was 235 
generated by a dedicated subpopulation responding to a repeated presentation of the same 236 
number, instead of changing the activity of the sample representing neurons. 237 

Together, these results indicate a (partially) shared capacity for sample and distractor 238 
representations during the sensory input and subsequent memory delay stages. The invasion 239 
of distractor information forced the recruitment of an extra component, the recovery 240 
component, to maintain sample information in working memory. 241 
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So far, all analyses were performed on separated (demixed) representations. We next 242 
investigated whether sample and distractor information could be equally disentangled using 243 
SCA alone without demixing the numerosity coding signal (Fig. 3c). SCA performed on firing 244 
rates averaged across the second memory delay recovered two sparse components that each 245 
selectively captured sample and distractor information (Fig. 3d). The corresponding 246 
representational geometry was grid-like with clearly factorized sample and distractor 247 
information that each aligned well to one SC (Fig. 3e). Notably, this alignment was non-trivial 248 
and not enforced by our analytical method, arguing that the PFC spontaneously disentangles 249 
target and distractor representations in working memory. The underlying implementation 250 
showed clear sparse structure in the neuronal loadings onto these components (Fig. 3f). 251 

For comparison, PCA, which is insensitive to the neuronal implementation, was unable to 252 
recover factorized components (Fig. 3g). The grid-like geometry was still largely preserved, 253 
but it did not align with the PCs (Fig. 3h). In contrast to SCA, PCA did not identify the 254 
components with the sparsest loadings (Fig. 3i). 255 

Subpopulations of neurons dominate working memory representations 256 

Next, we investigated whether the implementation was sparse enough to be able to reliably 257 
reconstruct the population-level sample representation using only a small fraction of neurons. 258 
We performed cross-temporal linear discriminant analysis (LDA) to decode sample numerosity 259 
at a given time point in the trial using training data from a different time point (Fig. 4). Decoding 260 
accuracy therefore quantifies the degree to which the representation is transferable. With four 261 
numerosities, chance level accuracy is 25 %. Using the entire population of 467 recorded 262 
neurons, we found a highly dynamic code with good within-epoch transfer, but very little 263 
generalization across epochs, in particular from the first to the second memory delay (Fig. 4a). 264 
In line with our previous results, this finding suggests that working memory representations 265 
are non-uniform and that distinct, complementary processes are required to protect 266 
behaviorally relevant information from interference. 267 

We selected the neurons that contributed most to the previously identified SCs (loading on the 268 
SC larger than two standard deviations; Fig. 4b). 36, 28 and 28 single neurons passed the 269 
criterion for the sensory, memory and recovery SC, respectively. Although each subpopulation 270 
comprised only 6 to 8 % of the entire recorded population, these 'dominant neurons' explained 271 
88 %, 82 % and 87 % of their respective component's variance (sum of squares of dominant 272 
neurons' loadings over sum of squares of all neurons' loadings). Overlapping membership in 273 
two subpopulations was very rare (no more than three neurons in any SC pair; Fig. 4b). 274 

Cross-temporal LDA using only the dominant neurons showed a very similar sample 275 
numerosity decoding pattern as with the entire population (Fig. 4c, cp. with Fig. 4a), 276 
confirming that the decoder previously relied mainly on this small subset of neurons. The 277 
sensory subpopulation contributed to decoding in particular during the sample and test 278 
numerosity presentation, but showed very little activity in the memory epochs (Fig. 4d, top). 279 
The memory subpopulation dominated in the first delay, but surprisingly was not involved in 280 
sample coding during the second delay (Fig. 4d, middle). Instead, after distraction, the 281 
recovery subpopulation was exclusively responsible for carrying sample information (Fig. 4d, 282 
bottom). This suggests that these neurons crucially contribute to shielding working memory 283 
information from interference (see also Fig. S1). 284 

Subpopulation-specific electrophysiological properties 285 
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Above, we identified dominant neurons based on their stimulus selectivity. We now 286 
investigated whether their different roles in representing sample information were possibly 287 
mirrored by distinct electrophysiological properties. 288 

First, we calculated the across-trial similarity (Pearson correlation) between each neuron's 289 
activity at different time points in the fixation period in order to derive the intrinsic time scale, 290 
a measure considered to index a neuron's ability to maintain memory traces (Murray et al., 291 
2014). Representative neurons from all three subpopulations are shown (Fig. 5a). The 292 
example recovery neuron had a significantly larger spread from the diagonal than the sensory 293 
and memory neuron, i.e., its activity in distant time points was more strongly correlated, thus 294 
signifying a longer time constant (Fig. 5a, bottom panel). For each subpopulation, an 295 
exponential decay was fitted to the mean correlation coefficient across neurons (Fig. 5b). The 296 
recovery subpopulation had the largest time constant t (165 ms, 127 ms, and 338 ms for 297 
sensory, memory and recovery neurons, respectively). The distribution of t values in the 298 
recovery population also stood out from the distributions observed in subsampled 299 
subpopulations of PFC neurons, whereas the sensory and memory neurons’ distributions 300 
were not significantly different (p = 0.874, p = 0.455, p = 0.002 for sensory, memory and 301 
recovery subpopulations, respectively; KL-divergence with bootstraps; Fig. 5c). 302 

Next, we investigated spike train statistics using the inter-spike intervals (ISI) measured during 303 
the neurons' entire recording lifetime. The coefficient of variation (CV) measures the 304 
irregularity of a spike train (Fig. 5d). CVs of all recorded neurons were larger than 1 (i.e., more 305 
irregular than a Poisson process) with a gradual increase of spiking irregularity across the 306 
sensory, memory and recovery subpopulations. CVs in the recovery neuron population were 307 
significantly larger than in the sensory subpopulation (p = 0.030, two-tailed t-Test; Fig. 5d). 308 
The local variation (LV) measures local ISI differences and complements CV, which is a global 309 
measure. LVs in all dominant neurons were smaller than 1 (i.e., less local variation than a 310 
Poisson process) and significantly lower than in the non-coding PFC population (p < 0.001, 311 
two-tailed t-Tests; Fig. 5e). 312 

Notably, these distinct electrophysiological properties were not involved in the original 313 
selection of subpopulations and therefore lend support to the notion that the implementation 314 
structure carries biological meaning. 315 

Subpopulation-specific temporal dynamics and representation of context 316 

There was no perceptual cue in the working memory task specifying the difference between 317 
sample and distractor. This forced the animals to internally keep track of a trial's temporal 318 
evolution. To investigate whether temporal dynamics and context played a role in supporting 319 
the subpopulation-specific stimulus representations, we next analyzed the temporal part of the 320 
demixed signal and visualized condition-averaged activity trajectories in each of the dominant 321 
subpopulations (Fig. 6a). 322 

In the sensory subpopulation, the trajectory followed a periodic, quasi-circular course (Fig. 6a, 323 
top panel). The first and second memory epochs overlapped almost entirely. This indicates 324 
that the sensory neurons did not distinguish between the time periods after sample and after 325 
distractor presentation. The trajectory of the memory subpopulation was less periodic, but 326 
intertwined in the first and second memory epochs (Fig. 6a, middle panel). In contrast, the 327 
trajectory of the recovery subpopulation was less intertwined, with most time points 328 
distinguishable from each other, especially the first and second memory epochs, signifying a 329 
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better representation of the contextual difference following sample and distractor presentation 330 
(Fig. 6a, bottom panel). 331 

Overlap of the memory epochs in the sensory and memory subpopulations could be due to 332 
the limitations of a linear projection and the emphasis of PCA on global structure. We therefore 333 
performed non-linear embedding using t-SNE (Fig. 6b). This analysis revealed comparable 334 
structures as the linear projection, with the first and second memory epochs separated only in 335 
the recovery neuron subpopulation. 336 

To further investigate the temporal evolution of neuronal activity, we measured the Euclidean 337 
distances between individual time points in each subpopulation (full space; Fig. 6c). All 338 
distance matrices displayed a strong diagonal, reflecting the fact that close-by time points 339 
were represented similarly. Notably, there were also strong offset diagonals in the sensory 340 
subpopulation, meaning that activity in these neurons repeated with a cycle of about 1.5 s. 341 
Furthermore, activity in the sensory and memory epochs differed most in this subpopulation. 342 
These patterns were present, albeit weaker, in the memory subpopulation, but absent in the 343 
recovery neurons. We quantified periodicity for each neuron by computing the relative power 344 
of 1/1.5 s (0.67 Hz) activity and its harmonics normalized to the power of the full frequency 345 
spectrum (Fig. 6d). Compared to randomly sampled subpopulations of PFC neurons, the 346 
sensory subpopulation and the recovery subpopulation showed significantly different (higher 347 
and lower, respectively) periodicity (p < 0.001, p = 0.051, p = 0.043 for sensory, memory and 348 
recovery subpopulations, respectively; KL-divergence with bootstraps; Fig. 6d inset). 349 

Neuronal activity is not static and temporally independent. Instead, firing rates at every time 350 
point depend on previous time points. To characterize the dynamical properties of the 351 
recorded PFC population in more detail, we used the measure of tangling (Russo et al., 2018). 352 
Tangling measures the extent to which the velocity (direction and speed) of a given state on 353 
a trajectory diverges from the velocity of its neighboring states (Fig. 6e), reflecting the level of 354 
unpredictability and instability (chaos) in the system. High tangling means a small disturbance 355 
in the current state would lead to large changes in the next state (difference of derivatives of 356 
neighboring points). The instability or inability to determine the next state from the current state 357 
(i.e., high tangling) indicates that other neuronal populations or external stimuli may drive the 358 
trajectory. Consequently, tangling was increased following the onset and offset of sensory 359 
input in all three subpopulations. Tangling was highest, however, in the sensory subpopulation 360 
and lowest in the recovery subpopulation (sensory vs. memory, p < 0.001; memory vs. 361 
recovery, p = 0.013; two-tailed t-Test across all trial time points; Fig. 6f). 362 

In summary, these results suggest that the subpopulation of recovery neurons keeps a record 363 
of time and temporal context, which could contribute to these neurons' ability to separate 364 
sample and distracting information. In contrast, the sensory subpopulation - and the memory 365 
subpopulation to a lesser degree - is characterized by its strong input-driven temporal 366 
dynamics, which is consistent with these neurons' passive representation of numerosity 367 
regardless of it being behaviorally relevant (sample) or irrelevant (distractor). 368 

Recurrent connectivity favors sparse implementations 369 

The implementation underlying the temporal evolution of neuronal representations is not 370 
arbitrary, but must be derived from the dynamical system of constituent neurons and their 371 
anatomical connectivity pattern. The PFC is a highly recurrent, rather than purely feed-forward, 372 
brain region (Harris et al., 2019). If biological structure and resource efficiency indeed favor 373 
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sparse implementations, these should be better captured by recurrently connected networks 374 
than non-structured Gaussian implementations. 375 

To address this hypothesis, we constructed a recurrent neural network model (RNN) to 376 
reproduce the target (to-be-fitted) firing rate sequences of each sample-distractor combination 377 
(Fig. 7a). The model consists of 467 neurons (to match the recorded population) receiving 378 
inputs of stimulus information according to the task structure. The model learns the recurrent 379 
connectivity 𝑊 among the neurons. 𝑊 summarizes the influence of the current time point's 380 
firing rates r on the firing rates of the next time point. An indicator vector n (one non-zero entry) 381 
represents the sample and distractor numerosity, activating the numerosity-specific input in I 382 
to the entire neuronal population. To reflect the absence of an explicit visual cue that 383 
differentiates between sample and distractor in the task design, sample and distractor 384 
numerosity share the same input channel (I, n). The contextual difference is left for the model 385 
to resolve. The intercept term b captures the baseline activity of each neuron. 386 

We first trained the model on the original dataset and visualized the trajectory of the output 387 
averaged across all conditions (Fig. 7b). The model reproduced the original dataset well, 388 
capturing 85.7 % of total variance. Next, we created substitute datasets with altered 389 
implementations of numerosity representations (xsample + xdistractor + xSD interaction) for the model to 390 
fit. The temporal part of the demixed data was unchanged. Three different implementations 391 
were created: first, a non-structured Gaussian distribution of neuronal loadings and no 392 
alignment to any components (cp. Fig. 1d); second, a distribution with the same degree of 393 
sparsity as the original data, but with sparse axes randomly rotated to align to other 394 
components (cp. Fig. 1e); third, a substitute with the same sparse distribution of neuronal 395 
loadings as in the original data (cp. Fig. 1f). 396 

The model captured an increasing proportion of variance of the full signal across the three 397 
substitutes (p < 0.001; one-way ANOVA; Fig. 7c). The absolute differences in explained 398 
variance were comparatively small (left axis), but remarkable in relation to the variance of the 399 
manipulated signal (right axis) and given that the representational geometry was unchanged 400 
and identical for all substitutes (cp. Fig. 1). A comparable result was obtained for the explained 401 
variance of the numerosity coding part (p < 0.001; one-way ANOVA; Fig. 7d). 402 

Taken together, these results demonstrate that sparse implementations of working memory 403 
representations are favored by recurrent circuits, the characteristic wiring motif of association 404 
cortices such as the PFC.  405 
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Discussion 406 

We presented a framework to examine the contributions of individual neurons to population-407 
level responses in representation space and to utilize its implementation structure. We 408 
identified heavy-tailed, i.e., sparse distributions of neuronal loadings on components that 409 
captured disentangled and sequential memory representations including the recovery of 410 
memory content after distraction. The switching of working memory components circumvented 411 
interference. These components could be traced to small subpopulations of neurons with 412 
distinct electrophysiological properties and temporal dynamics. Modelling showed that such 413 
sparse implementations with sequentially active components are supported by recurrently 414 
connected networks. 415 

Bridging population activity and neuronal implementation 416 

Population-level activity and representational geometry were previously studied without 417 
forming direct links to individual neurons (Bernardi et al., 2020; Chung & Abbott, 2021; 418 
Kriegeskorte & Wei, 2021; Okazawa et al., 2021). However, while single-neuron selectivity 419 
measures have the advantage of being more easily connected to biological properties such 420 
as cell type, receptor expression and axonal projection targets, they are typically chosen 421 
based on intuition and past experience and only partially or indirectly reflect the full 422 
representational space (Hirokawa et al., 2019; Jacob & Nieder, 2014). 423 

Our sparse component analysis (SCA) framework (Fig.1) combines the advantages of both 424 
perspectives. It builds on representational geometry for a comprehensive account of the data 425 
and then links the relevant coding dimensions in the activity space to populations of strongly 426 
contributing neurons, which allows relating the population-wide activity patterns to tangible 427 
physiological measures. 428 

Implementation reveals biologically relevant dimensions in activity space 429 

Without respecting implementation, selecting components in activity space for further analysis 430 
is arbitrary. It is often done post-hoc after visualizing the top PCs, or by relying on the heuristics 431 
of 'what should be coded' in the system (Aoi et al., 2020; Bernardi et al., 2020; Libby & 432 
Buschman, 2021). This approach becomes problematic when the dimensionality is too high 433 
or when too many variables are involved. 434 

By exploiting neuronal implementation, SCA identifies activity components in an un-biased 435 
and non-arbitrary way. SCA can therefore capture a more complete set of stimulus-associated 436 
variables (dimensions), most notably the temporal modulation of stimulus coding. This 437 
reduces bias otherwise introduced by selecting specific time windows, across which neuronal 438 
activity is averaged, and acknowledges the role of different response dynamics for information 439 
coding (Bondanelli & Ostojic, 2020; Mante et al., 2013). Furthermore, incorporating temporal 440 
modulation renders analyses more robust to noise (Johnstone & Lu, 2009), which is usually 441 
Gaussian and could hide the structure in implementation. 442 

The implementation's sparse structure is a result of biological constraints regarding the 443 
connections among individual neurons. The approximately 104 dendritic spines on each 444 
cortical neuron (Eyal et al., 2018) define an upper limit for the number of neurons it could read 445 
out from. The 109 neurons in a cortical region such as human PFC (Courchesne et al., 2011; 446 
Herculano-Houzel et al., 2015), and even sub-modules with one to two magnitudes fewer 447 
neurons, therefore cannot be reached directly. The addition of one connection step would 448 
allow reaching the majority of PFC neurons, but at the cost of producing a layer of 104 to 105 449 
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neurons that are dedicated exclusively to feeding the single hypothetical downstream neuron. 450 
This is prohibitively inefficient. In such polysynaptic chains, it is more likely that meaningful 451 
representations have already emerged in intermediate layers as a result of direct connections 452 
from the source region. This notion is also in line with the high dimensionality and non-linear 453 
mixed selectivity characteristic of PFC, which allow for direct linear readout of complex 454 
representations without further computations (Rigotti et al., 2013). 455 

Neurons share inputs and have local recurrent connections, which are particularly pronounced 456 
in association cortices such as the PFC (Harris et al., 2019), resulting in more similar firing 457 
patterns among neurons within cortical regions. Consequently, neurons might display activity 458 
that is weakly correlated to some components of the representational geometry even though 459 
they do not participate in the readout. This emphasizes the importance of truncating neurons 460 
with weak loadings and enforcing sparsity constraints for estimating potential readout 461 
connections (Fig.  4) and motivates the use of dynamical systems modelling to validate 462 
correlative measures (Fig. 7). 463 

Working memory persistence without neuronal persistence 464 

Applied to working memory maintenance in the face of distraction, our framework uncovered 465 
an unexpected sequential representation of numerosity information across multiple task 466 
epochs (Fig. 2). This result was neither encouraged nor guaranteed by SCA. This suggests 467 
that the readout of memory content from the PFC is optimized for accuracy in each behavioral 468 
context rather than optimized for stability across time periods. The distractor occupied the 469 
same resources as the sample numerosity with regard to the sensory and memory component 470 
(Fig. 3), forcing behaviorally relevant information to be shifted to the recovery component 471 
following distraction. Thus, working memory content was maintained by distinct mechanisms 472 
before and after interference (Fig. 4). 473 

The subpopulation of recovery neurons was characterized by electrophysiological properties 474 
that set these neurons apart from the other populations and could render them particularly 475 
suited to working memory storage. Their longer intrinsic timescales (Fig. 5) suggest more 476 
stable memory retention (Kim & Sejnowski, 2021; Murray et al., 2014). These neurons also 477 
distinguished between sample and distractor contexts, which is crucial for determining what 478 
information to keep and what information to discard (Fig. 6). The contextual signal was 479 
additively mixed with the numerosity coding signal in these neurons, but might still act as gain 480 
modulation for numerosity information given the neuronal input-output non-linearity (Dubreuil 481 
et al., 2020). 482 

Representing memory content by sequentially active subpopulations is advantageous. With 483 
relay of information, a result of locally feed-forward connectivity, a network can maintain 484 
multiple inputs from previous time points and show more resistance to noise (Orhan & Pitkow, 485 
2020). Furthermore, the PFC might be non-linearly mixing context and memory 486 
representations in all possible ways, expanding dimensionality to enable flexible readout 487 
(Rigotti et al., 2013). Extensive training could have strengthened the non-linear mixture of 488 
second memory epoch context and sample numerosity representations that was most 489 
important in the current task, with the PFC retaining other mixtures (e.g. the component coding 490 
for sample numerosity in the first memory epoch) for other behavioral demands. In this view, 491 
the subpopulation of memory neurons could function as a more passive short-term memory 492 
storage oblivious to the behavioral relevance of the memorized information. 493 
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Introducing distraction into the memory delay unmasked the crucial role of recovery neurons 494 
for working memory maintenance, which would have been hidden in simpler tasks. This 495 
highlights the importance of including richer temporal structure, multiple processing stages 496 
and behavioral perturbation into cognitive task designs to enable dissection of higher-order 497 
brain functions in finer detail and sampling from the full spectrum of underlying mechanisms. 498 

Alternative implementation structures 499 

We focused here on detecting sparse structure in the representational geometry's neuronal 500 
implementation, which is linked to the standardized moment of kurtosis. Consequently, the 501 
loading distributions have both positive and negative heavy tails. Reading out a given sparse 502 
component thus requires both excitatory and inhibitory connections. However, long-range 503 
corticocortical projections are mainly excitatory. This means that other selection criteria that 504 
capture non-symmetrical structure such as the standardized moment of skewness should also 505 
be explored (Koren et al., 2020; Román Rosón et al., 2019). 506 

Structure could be in the form of disjointed cell clusters (Hirokawa et al., 2019) or a mixture of 507 
Gaussians (Dubreuil et al., 2020). However, if present, these structures would not dissect the 508 
representational geometry, as they do not have a one-to-one relation to the dimensions in the 509 
activity space. Our neuronal implementation followed a unimodal Laplace distribution (Fig. 2g) 510 
instead of a multimodal distribution. 511 

Structure can also be investigated when there are no prior assumptions about the underlying 512 
distributions of neuronal loadings. For example, given that neuronal firing is energy-consuming 513 
and non-negative, possibly encouraging neurons to align to the dimensions of the 514 
representational geometry that have shorter ranges of variation, non-uniform distributions of 515 
the number of selective neurons across different dimensions can arise (Whittington et al., 516 
2022). However, because all neurons are counted equally, structure probed non-517 
parametrically could potentially be clouded by the large number of weakly coding (non-518 
dominant) neurons and thus difficult to detect, in particular in PFC (Bernardi et al., 2020). 519 

Relation of SCA to other linear dimensionality reduction methods 520 

Different linear dimensionality reduction methods based on L2 reconstruction loss will yield 521 
comparable representational geometries, but they will not find the same projections of the 522 
representational geometry, i.e., the same components or the same coordinate system in which 523 
the data is expressed. The principle components of PCA are conveniently orthogonal and 524 
ranked by variance (Vu & Lei, 2013), but usually neither correspond to task-related 525 
components nor align to the activity of individual neurons (Higgins et al., 2021). Truncating the 526 
smaller PCs provides denoised signal as a preprocessing step for independent component 527 
analysis (ICA) that can infer the independent sources in the signal space (Hyvärinen & Oja, 528 
2000). Its most common form, fastICA, enforces sparsity constraints on the activity of the 529 
components, reflecting an assumption about the activity (Hyvarinen, 1999). In contrast, in SCA 530 
the sparsity constraint is on the neuronal implementation, i.e., the potential readout weights 531 
corresponding to the mixing matrix in ICA, reflecting an assumption about the connectivity. 532 

Neuronal representations must be communicated. Information that cannot be accessed by 533 
other neurons does not exist. In order to understand complex neural systems such as the PFC 534 
where we lack clear priors about the signal sources, it is paramount to exploit the circuit and 535 
wiring motifs that underlie the observed activity patterns.  536 
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Methods 676 

Two adult male rhesus monkeys (Macaca mulatta, 12 and 13 years old) were used for this 677 
study. All experimental procedures were in accordance with the guidelines for animal 678 
experimentation approved by the national authority, the Regierungspräsidium Tübingen. A 679 
detailed description is provided elsewhere (Jacob et al., 2018; Jacob & Nieder, 2014). 680 

Surgical procedures  681 

Monkeys were implanted with two right-hemispheric recording chambers centered over the 682 
principal sulcus of the lateral prefrontal cortex (PFC) and the ventral intraparietal area (VIP) in 683 
the fundus of the intraparietal sulcus. This study reports on the PFC data. 684 

Task and stimuli  685 

The animals grabbed a bar to initiate a trial and maintained eye fixation (ISCAN, Woburn, MA) 686 
within 1.75°of visual angle of a central white dot. Stimuli were presented on a centrally placed 687 
gray circular background subtending 5.4° of visual angle. Following a 500 ms pre-sample 688 
(pure fixation) period, a 500 ms sample stimulus containing 1 to 4 dots was shown. The 689 
monkeys had to memorize the sample numerosity for 2,500 ms and compare it to the number 690 
of dots (1 to 4) presented in a 1,000 ms test stimulus. Test stimuli were marked by a red ring 691 
surrounding the background circle. If the numerosities matched (50 % of trials), the animals 692 
released the bar (correct Match trial). If the numerosities were different (50 % of trials), the 693 
animals continued to hold the bar until the matching number was presented in the subsequent 694 
image (correct Non-match trial). Match and non-match trials were pseudo-randomly 695 
intermixed. Correct trials were rewarded with a drop of water. In 80 % of trials, a 500 ms 696 
interfering numerosity of equal numerical range was presented between the sample and test 697 
stimulus. The interfering numerosity was independent from either the sample or test 698 
numerosity and therefore not useful for solving the task. In 20 % of trials, a 500 ms gray 699 
background circle without dots was presented instead of an interfering stimulus, i.e., trial 700 
length remained constant (control condition, blank). Trials with and without interfering 701 
numerosities were pseudo-randomly intermixed. Stimulus presentation was balanced: a given 702 
sample was followed by all interfering numerosities with equal frequency, and vice versa. 703 
Throughout the monkeys’ training on the distractor task, there was never a condition where a 704 
stimulus appearing at the time of the distractor was task-relevant.  705 

Low-level, non-numerical visual features could not systematically influence task performance 706 
(Jacob & Nieder, 2014; Nieder et al., 2002):in half of the trials, dot diameters were selected at 707 
random. In the other half, dot density and total occupied area were equated across stimuli. 708 
CORTEX software (NIMH, Bethesda, MD) was used for experimental control and behavioral 709 
data acquisition. New stimuli were generated before each recording session to ensure that the 710 
animals did not memorize stimulus sequences.  711 

Electrophysiology  712 

Up to eight 1 MΩ glass-insulated tungsten electrodes (Alpha Omega, Israel) per chamber and 713 
session were acutely inserted through an intact dura with 1 mm spacing. Single units were 714 
recorded at random; no attempt was made to preselect for particular response properties 715 
(Jacob & Nieder, 2014). Signal amplification, filtering, and digitalization were accomplished 716 
with the MAP system (Plexon, Dallas, TX). Waveform separation was performed offline 717 
(Plexon Offline Sorter). 718 
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Data analysis 719 

Data analysis was performed with Python using custom scripts based on packages NumPy, 720 
SciPy, sci-kit learn, TensorFlow2, PyTorch, Matplotlib and Plotly. 721 

Preprocessing 722 

Single units were included in the analysis if they were recorded in at least 4 correct trials of 723 
each task condition (meaning each unique sample and distractor numerosity combination). 724 
This resulted in 467 neurons across 78 sessions recorded in the PFC. Trials without distractors 725 
were not included in the analyses unless specified otherwise. 726 

Unless specified otherwise, the firing rates were binned in a Gaussian window with sigma of 727 
50 ms and step of 100 ms, aligned to the start of the fixation period. The data were then 728 
organized into a neuron-by-condition-by-timepoint tensor. Each tensor entry was normalized 729 
by the standard deviation across trials (within each condition). 730 

Demixing 731 

Given the independence of the task variables sample numerosity (s), distractor numerosity (d) 732 
and trial time (t), the neuronal activity can be directly factorized into parts for each variable 733 
and their interaction: 734 

𝑥 = 𝑥̅ + 𝑥!% + 𝑥"% + 𝑥̅# + 𝑥̅"! + 𝑥̅#! + 𝑥̅"# + 𝑥̅"#! 735 

Because the stimulus response is also modulated by time, each part was grouped together 736 
with its interaction with time (Kobak et al., 2016): 737 

𝑥!$%& = 𝑥!%  738 

𝑥"'%()& = 𝑥"% + 𝑥̅"! 739 

𝑥#$"!*'+!,* = 𝑥̅# + 𝑥̅#! 740 

𝑥"#	$.!&*'+!$,. = 𝑥̅"# + 𝑥̅"#! 741 

Visualization of representation and implementation space 742 

For a data matrix 𝑋 where each column vector 𝑥 is the demixed activity of a neuron, the 743 
singular value decomposition was taken: 744 

𝑋 = 𝑈Σ𝑉/ 745 

where 𝑈 and 𝑉 are unitary matrices and Σ is a diagonal matrix with ordered singular values. 746 
The first 𝑛  columns of 𝑈Σ  are the PCs that were used to visualize the representational 747 
geometry. The first n columns of 𝑉Σ are loadings on the PCs that were used to visualize the 748 
implementation space. 749 

Within this subspace an arbitrary component can be specified with 𝑈Σ𝑃:,2 (𝑃:,2 being a column 750 
vector from a unitary matrix 𝑃), with the orientation of this component given by 𝑃:,2 . The 751 
loadings on this component will be the first row of (𝑈Σ𝑃)3	𝑋 = 𝑃/𝑉/, that is 𝑃:,2/𝑉/. This 752 
way, the loadings are visualized with the same orientation 𝑃:,2. in implementation space as 753 
their corresponding component in representation space. The sparsity index of the neuronal 754 
loadings on component	𝑈Σ𝑃:,2 is then: 755 
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𝑆𝐼2𝑃:,23 = 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑃:,2/𝑉/)/3 756 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝒙) = ⟨(𝒙 − 𝒙%)4⟩ ⟨(𝒙 − 𝒙%)𝟐⟩⁄ 6 757 

Sparse component analysis 758 

Following the formulation of sparse coding (Georgiev et al., 2007; Lee et al., 2007; Olshausen 759 
& Field, 1996), sparse component analysis (SCA) reduces the dimensionality of the dataset 760 
and extracts the unique components by enforcing a sparse penalty on neuronal loadings: 761 

𝐿𝑜𝑠𝑠 = C𝑋 −D𝑢7EEE⃗ 	𝑣7EEE⃗
/

8

$92

C
:*,;&.$<"

+ 𝛼D‖𝑣7EEE⃗ ‖2

8

$92

+ 𝛽D‖𝑣7EEE⃗ ‖66
8

$92

 762 

‖𝑢7EEE⃗ ‖ = 1 763 

The loss function is defined as the sum of the reconstruction loss and the regularizations. Data 764 
𝑋 is organized as a n firing instances by p neurons matrix. 𝑋 is then approximated by 𝑘 firing 765 
activity vectors 𝑢E⃗  and their corresponding neuronal loadings 𝑣⃗ . Parameter 𝛼  controls the 766 
strength of L1-regularization that encourages sparsity of the loadings. Parameters 𝛼 and 𝑘 767 
were determined by a cross-validated grid search. 𝛽  was set at 0.01 to smooth the loss 768 
landscape and make the result stable across random initializations. 769 

Substitute data for SCA 770 

Substitute data were created for the demixed sample coding part 𝑋 of the data (Fig. 2). For 771 
the singular value decomposition 𝑋 = 𝑈Σ𝑉/ , 𝑈Σ  specifies the representational geometry 772 
(see above). Operations were performed on 𝑉 only. 773 

A random unitary matrix 𝑅 with the size of the number of neurons was drawn from a Haar 774 
distribution. The original matrix 𝑉  was replaced with 𝑉= = 𝑉𝑅 . 𝑉′ is also a unitary matrix, 775 
meaning that this manipulation will not change the geometries but will rotate them to random 776 
axes. In other words, it will linearly combine the loadings including those on the components 777 
with very low variance, which will render the substitute distribution of loadings on the sample 778 
numerosity components close to Gaussian. The substitute data is then 𝑋= = 𝑈Σ𝑉=/ = 𝑋𝑅 779 

Measures of sparse component activity 780 

𝑢7EEE⃗  in SCA specifies the activity of the sparse component i. The following measures of the set 781 
of 𝑢7EEE⃗  were compared between the original dataset and its substitutes (n = 1000). 782 

Spread of representation. The standard deviation of 𝑢7EEE⃗  across different numerosity conditions 783 
k at each time point was used to define the relative (normalized) information at that time point. 784 
Specifically, each 𝑢7EEE⃗  was first reshaped into a condition-by-timepoint matrix 𝑌$ . Then the 785 
information in component 𝑖 at time point t is given by: 786 

𝑍$,! = P〈(𝑌8,!$ − 〈𝑌8,!$ 〉8)6〉8 787 

The skewness of the information across time points was calculated for each component and 788 
averaged across components as follows: 789 
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𝑆𝑘𝑒𝑤$ = 〈(𝑍$,! − 𝑍7,!UUUU)>〉!/〈(𝑍$,! − 𝑍7,!UUUU)6〉!
>/6 790 

Positively skewed 𝑍 indicates a long tail in the distribution of information across time points, 791 
corresponding to few time points having high information. Conversely, a smaller or even 792 
negative skewness implies there are more high information timepoints than low information 793 
time points, making the high information more spread out across time points. We define the 794 
spread of representation as the negative skewness: 795 

𝑆𝑝𝑟𝑒𝑎𝑑 = −⟨𝑆𝑘𝑒𝑤$⟩$ 796 

Overlap of active periods. The dot product of the information of every pair of components i and 797 
j was taken and averaged across pairs: 798 

𝑂𝑣𝑒𝑟𝑙𝑎𝑝 = [𝑍$,!𝑍@,!/ \ 799 

Maximum tuning reversal. A given component 𝑖  may show changes of tuning to sample 800 
numerosities during the course of a trial. Its tuning at time 𝑡 is specified by 𝑌:,#$ . For each 801 
component 𝑖, the dot product similarity of tunings between timepoint pairs was specified in the 802 

non-diagonal entries in 𝐶$ = 𝑌$/𝑌$, where the diagonal entries are the strength of the tuning 803 

at each time point. 𝐶$ was then normalized to the strongest tuning: 𝐶𝑖
%
= 𝐶𝑖/max&𝐶𝑖'. The 804 

most negative entry in 𝐶𝑖
%
 was then the degree of reversal in this component. 𝑅𝑒𝑣𝑒𝑟𝑠𝑎𝑙$ =805 

−min b𝐶$ ′c. It would reach the maximum of 1 when tuning at a given time point is the 806 

complete reversal of the strongest tuning. It would be close to 0 when the tuning does not 807 
reverse. The maximum tuning reversal is then the largest reversal in a set of SCs: 808 

𝑀𝑎𝑥	𝑡𝑢𝑛𝑖𝑛𝑔	𝑟𝑒𝑣𝑒𝑟𝑠𝑎𝑙 = max
B
𝑅𝑒𝑣𝑒𝑟𝑠𝑎𝑙$ = max

B
[−ming

𝑌$/𝑌$

max2𝑌$/𝑌$3
h] 809 

Component similarity. Let 𝑈"+' be the concatenation of activity 𝑢E⃗ $ and 𝑉"+' the concatenation 810 
of loadings 𝑣⃗$  of the sparse component i. The data matrix can be expressed as 𝑋 =811 
𝑈"+'𝑉"+'/ + 𝜖 . 𝜖  denotes the noise term. Then it follows 𝑈"+'3 (𝑋 − 𝜖) = 𝑉"+'/ . The 812 
pseudoinverse 𝑈"+'3  can be viewed as a linear transform of the original data. Since all the 813 
activities 𝑢E⃗  have unit length, larger loadings would be required to express an arbitrary 814 
geometry when the activities are correlated, meaning lower efficiency. The component 815 
similarity is measured by the product of the singular values of 𝑈"+'. Formally, if the singular 816 
value decomposition gives 𝑈"+' = 𝑈Σ𝑉/, then 817 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 =mΣ$,$
$

 818 

The similarity can also be viewed as the determinant of the transformation matrix from arbitrary 819 
orthogonal bases to the bases of 𝑈"+'. 820 

Numerosity information in different components 821 

The standard deviation 𝑍$,!  for all time points t specifies the evolution of normalized 822 
information within this component. But since 𝑢E⃗ $ in component i has unit length, this measure 823 
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does not allow for direct comparisons between components (see above). To allow for such 824 
comparisons (Fig. S1), the norm of 𝑣7EEE⃗  is therefore applied to 𝑍$,! as a scaling factor: 825 

𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 = ‖𝑣7EEE⃗ ‖𝑍$,! 826 

Linear discriminant analysis decoding 827 

Neurons recorded in different sessions were stitched together. To account for the different 828 
number of trials recorded per neuron, a criterion was set to ensure there were at least 1.5 829 
times more trials than neurons. This resulted in 228 neurons with at least 385 trials each. 830 
Removing incorrect trials and selecting the minimum number of trials recorded per condition 831 
and neuron left 118 trials per neuron. Trials of the same condition were then randomly selected 832 
for each repetition of the analysis. 833 

Multi-class linear discriminant analysis (LDA; sci-kit learn package) was used for decoding 834 
because of its advantageous property of accounting for data covariance. LDA assumes the 835 
same covariance in every class. It finds the projection that preserves the Mahalanobis 836 
distance between classes and predicts the label of a new data point by its Mahalanobis 837 
distance to the class centroid. Shrinkage of the measured covariance matrix was performed 838 
by averaging with a diagonal matrix. The strength of shrinkage was determined following the 839 
Ledoit-Wolf lemma (Ledoit & Wolf, 2004). 840 

Decoding accuracy, i.e., the ratio of correctly predicted trials, was averaged across 7 841 
repetitions of 7-fold cross-validation. 842 

Spike train statistics 843 

Firing rates were binned in a Gaussian window with sigma of 12.5 ms and step of 25 ms. 844 

Correlation, autocorrelation and intrinsic timescales were determined as described elsewhere 845 
(Murray et al., 2014). The firing rate of each neuron 𝑛 at timepoint 𝑡 of trial 𝑖 is expressed as 846 
𝑥.,$,!. The Pearson correlation between timepoints 𝑡1 and 𝑡2 is then: 847 

𝑟.(𝑡1, 𝑡2) =
qb𝑥.,$,!2 − [𝑥.,$,!2\$c b𝑥.,$,!6 − [𝑥.,$,!6\$cr$

qb𝑥.,$,!2 − [𝑥.,$,!2\$c
6
r
$

2/6
qb𝑥.,$,!6 − [𝑥.,$,!6\$cr$

2/6 848 

Autocorrelation is defined as: 849 

𝐴𝐶.(Δ𝑡) = ⟨𝑟.(𝑡0, 𝑡0 + Δ𝑡)⟩!C 850 

To account for the refractoriness and adaptation at small time lags, fitting started at the time 851 
lag where the autocorrelation function had dropped most strongly. Neurons with the strongest 852 
drop after 400 ms were discarded (6 neurons). The autocorrelation was then fitted with an 853 
exponential decay: 854 

𝐴𝐶(Δ𝑡) = 𝐴[exp(−Δ𝑡 𝜏⁄ ) + 𝐵] 855 

Parameters 𝐴 and 𝐵 were constrained in [0,1] and 𝜏 was constrained from 10 ms to 2000 ms. 856 
The autocorrelation function of 8 neurons could not be fitted. The neurons with 𝜏 fitted below 857 
20 ms (20 neurons) or above 1600 ms (25 neurons) were excluded because of the biologically 858 
unrealistic fit. This left 408 neurons. Very few neurons were excluded in the dominant 859 
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subpopulations (2, 2, and 1 neurons for the sensory, memory and recovery subpopulation, 860 
respectively). 861 

The inter-spike intervals (ISI) were determined for the entire session. The coefficient of 862 
variation (CV) measures the global variation of a neuron's ISI and is defined as: 863 

𝐶𝑉 = 𝑠. 𝑑. (𝐼𝑆𝐼)/⟨𝐼𝑆𝐼⟩ 864 

In contrast to CV, local variation (LV) measures the local ISI change (Shinomoto et al., 2009). 865 
It is defined as: 866 

𝐿𝑉 =
3

𝑛 − 1D
(𝐼𝑆𝐼$ − 𝐼𝑆𝐼$32)6/(𝐼𝑆𝐼$ + 𝐼𝑆𝐼$32)6

.D2

$92

 867 

CV and LV are both expected to be 1 for spiking activity following a Poisson process. CV and 868 
LV would be 0 for perfectly regular firing and larger than 1 for more irregular firing than by a 869 
Poisson process. 870 

Kullback-Leibler divergence 871 

KL divergence measures the difference between two distributions. For the analyses of intrinsic 872 
time scales and periodicity, KL divergence was calculated between the distribution of statistic 873 
𝑥 for the entire population 𝑃 and that of sub-samples 𝑄 (either dominant subpopulations or 874 
bootstrap subsamples). It is given by: 875 

𝐷EF(𝑃‖𝑄) = −D𝑃(x) ⋅ log	 𝑄(x)/𝑃(x)
G

 876 

To create the null distribution of 𝐷EF, 27 neurons (comparable to the number of neurons in the 877 
dominant subpopulations after exclusion of neurons in which no autocorrelation function could 878 
be fitted) were randomly sampled from the PFC population 1000 times. 879 

Temporal dynamics 880 

Periodicity. The Fourier transform of the demixed temporal part of the firing rate of each neuron 881 
is given by: 882 

𝑃𝑆𝐷(𝑓) = 𝐷𝐹𝑇(𝑥!$%&(𝑡)) 883 

Then, the periodicity was defined as the ratio between the power of the harmonics of 1/1.5 Hz 884 
(reflecting the onset of visual input at regular spacing of 1.5 s) and the power of all frequencies: 885 

𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝑖𝑡𝑦 = D 𝑃𝑆𝐷(𝑖
2
3)

$∈I!
/D𝑃𝑆𝐷(𝑓)

:

 886 

Tangling. Tangling reflects the smoothness and stability of the flow field around the vicinity of 887 
state 𝑥# on a trajectory (Russo et al., 2018). It is given by: 888 

𝑄(𝑡) = max
!"

‖𝒙̇! − 𝒙̇!"‖𝟐

‖𝒙! − 𝒙!"‖6 + 𝜖
 889 
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It specifies the maximum difference between the derivative at state 𝑥# and the derivative at 890 
other states 𝒙#! , normalized by their Euclidean distance. A small constant 𝜖 was added to 891 
avoid numerical error when the two states were too close. 892 

Recurrent neural network 893 

A recurrent neural network (RNN) model was implemented using the PyTorch neural network 894 
module. The model has the formulation: 895 

𝒓(𝑠, 𝑑, 𝑡 + 1) = 𝜙(𝑊𝒓(𝑠, 𝑑, 𝑡) + 𝐼𝒏(𝑠, 𝑑, 𝑡) + 𝒃) 896 

𝒓 is the firing rate of units in the condition of sample numerosity 𝑠 and distractor numerosity 𝑑 897 
at time point 𝑡. 𝜙 is the non-linear activation function, chosen to be a rectified linear unit (ReLu) 898 
to respect the biological characteristics of non-negative firing rates with high upper limits. 𝑊 899 
is the within-population connectivity matrix. 𝐼 is the input matrix with the dimensions of 467 900 
(total number of units) by 4 (number of numerosities). A column 𝐼:,' is the input to the units 901 
when numerosity 𝑎  is being presented. 𝒏  is an indicator vector with the entry 𝒏' 902 
corresponding to the presented numerosity being 1 and all other entries being 0. 𝒃 is the 903 
intercept. 𝑊, 𝐼 and 𝒃 are the parameters to be trained. Formally, 𝒏 as a function of trial type 904 
specified by 𝑠 and 𝑑 and time point 𝑡 is defined by: 905 

𝒏(𝑠, 𝑑, 𝑡) = 𝒎(𝑠) ⋅ 𝑚𝑎𝑠𝑘[C.L,2)(𝑡) +𝒎(𝑑) ⋅ 𝑚𝑎𝑠𝑘[6,6.L)(𝑡) 906 

𝒎(𝑥) = �𝟏{2}(𝑥), 𝟏{6}(𝑥), 𝟏{>}(𝑥), 𝟏{4}(𝑥)�
/
 907 

𝑚𝑎𝑠𝑘P(𝑡) = 𝟏P(𝑡 ∗ 0.1) 908 

𝟏P(𝑥) ≔ �1, 𝑥 ∈ 𝐴0, 𝑥 ∉ 𝐴 909 

𝒎 maps a numerosity to the corresponding one-hot vector. 𝑚𝑎𝑠𝑘P(𝑡) indicates the time 910 
(0.1 s steps) when the corresponding stimulus is presented. 𝟏P(𝑥) is an ancillary indicator 911 
function to define 𝒎 and 𝑚𝑎𝑠𝑘. 912 

The model was trained to produce the whole sequence of firing rates 𝒓(𝑠, 𝑑, 𝑡) in order to 913 
match the target data 𝒙",#,!, given the initial firing rate in the fixation period 𝒓(𝑠, 𝑑, 0) and the 914 
input 𝒏(𝑠, 𝑑, 𝑡). The loss function is defined as: 915 

𝐿𝑜𝑠𝑠(𝑊, 𝐼, 𝒃) = D�𝒓(𝑠, 𝑑, 𝑡) − 𝒙",#,!�
𝟐 + 𝜆‖𝑊‖2 + 𝜆‖𝐼‖2

",#,!

 916 

𝒓(𝑠, 𝑑, 𝑡C) = 𝒙",#,!# 917 

The coefficient 𝜆 controls the strength of regularization and was determined by a grid search 918 
with cross validation. 919 

The prediction of the later timepoints relies on the quality of the prediction of the early 920 
timepoints. If the training was done only by giving the first timepoint, convergence would be 921 
difficult to achieve and learning heavily biased towards reproducing early timepoints in the 922 
data. To overcome this possible instability, the model was trained in a recursive fashion by 923 
first using every timepoint as the initial firing rate, training the model to predict the following 924 
timepoints and gradually increasing the number of timepoints the model needs to predict. As 925 
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such, at each iteration 𝑖, the temporal sequence 𝑥",#,! was reorganized into 𝑇 − 𝑖 chunks of 926 
length 𝑖 + 1, [𝒙",#,!# , … , 𝒙",#,!#3$\, 𝑡C ∈ ⟨1,… , 𝑇 − 𝑖⟩, with the first firing rate in each chunk as 927 
initial firing rate and the rest as target to be fit by the model. 928 

Variance explained by RNN 929 

The variance explained by the model was determined by the difference between the model's 930 
predicted trajectory and the trajectory of the original data normalized to the difference between 931 
a reference trajectory (constant activity set to the first entry of the fixation period) and the 932 
trajectory of the original data: 933 

𝐸𝑉 = 1 −D�𝒓(𝑠, 𝑑, 𝑡) − 𝒙",#,!�
𝟐

",#,!

/D�𝒙",#,!# − 𝒙",#,!�
𝟐

",#,!

 934 

The normalized EV (Fig. 7c, right axis) was defined as the difference between a substitute’s 935 
EV and the original data’s EV, divided by the percentage of the manipulated variance 936 
(numerosity coding signal, 27.4 %; cp. Fig. 2b). EV for the numerosity signal (Fig. 7d) was 937 
calculated by replacing both 𝒓(𝑠, 𝑑, 𝑡) and 𝒙",#,! with their demixed numerosity representing 938 
parts. 939 

Substitute data for RNN 940 

In order not to distort the strong connection between sample and distractor numerosity coding 941 
(e.g., Fig. 3b, Fig. S1), the loadings of these two parts of the data and their interaction were 942 
shuffled together to create three types of substitute datasets. The RNN model was then trained 943 
on the substitutes. 944 

Gaussian distribution of loadings. The Gaussian substitutes were created as described for 945 
SCA, except for that singular value decomposition was performed on 𝑋"'%()& + 𝑋#$"!*'+!,* +946 
𝑋"#_$.!&*'+!$,. = 𝑋')) − 𝑋! = 𝑈Σ𝑉/. 947 

Sparse distribution with random alignment. For 𝑘 dimensions of the numerosity coding part of 948 
the data (determined by cross validation), a 𝑘 × 𝑘 unitary matrix 𝑅 was randomly drawn from 949 

a Haar distribution and combined with an identity matrix 𝐼 to create 𝑅= = b𝑅 0
0 𝐼c. Then, 𝑉= =950 

𝑉𝑅′ was substituted for 𝑉 . This leaves the sparse structure in the original 𝑘  dimensional 951 
numerosity representing subspace intact, but rotates the sparse structure in 𝑉:,2:8 to random 952 
orientations. 953 

Sparse distribution with original alignment. The rows of 𝑉:,2:8, i.e., the neuronal identities, were 954 
permuted by substituting 𝑉= = (𝑉(&*%<!&,2:8 , 𝑉:,832:() for 𝑉.  955 
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 956 

Fig. 1 | Different neuronal implementations of the same representational geometry 957 

(a) Representational geometry for two trials with stimuli A and B on the plane specified by 958 
stimulus PC1 and PC2. Time runs along the individual trajectories. (b) Left: example pair of 959 
components that express the representational geometry (magenta arrows). Right: activities 960 
on the corresponding components and standard deviation (s.d.) across components as a 961 
measure of amount of information carried by them. Components are aligned with the PCs. 962 
(c) Same layout as in (b) for a non-aligned pair of components. (d-f) Neuronal implementation 963 
underlying the representational geometry in (a-c), specified by the distribution of neuronal 964 
loadings on the stimulus PCs. Insets: sparsity index (SI) of all axis orientations in the space 965 
spanned by PC1 and PC2. Axes with high SI (sparse axes, magenta arrows) in (e) and (f) 966 
correspond to the components 1 and 2 in (b) and (c), respectively.  967 
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 968 

Fig. 2 | The neuronal implementation of working memory 969 

(a) Delayed-match-to-numerosity task with distractors. (b) Demixing procedure separating the 970 
activity of each neuron into the parts coding time, sample numerosity, distractor numerosity 971 
and sample-distractor interaction. The sample coding part is used for the following analyses. 972 
Top: percentage of explained variance for each part. (c) Representational geometry for 973 
sample numerosities 1 and 4 in PC space, averaged across trials of the same condition. 974 
(d) Loadings of all recorded neurons on the top three PCs (black dots) including distributions 975 
projected onto the planes formed by PC pairs (gray dots). Sparse axes (magenta arrows; 976 
determined by SCA) have high SI. Inset: surface plot of SI for all axes in the space. (e) Activity 977 
of the three identified sparse components (SCs), averaged across trials for each sample 978 
numerosity condition (top; numbers indicate sample numerosity) and relative information 979 
across conditions measured as standard deviation (s.d.). (f) SCs of an example substitute 980 
dataset with non-structured Gaussian implementation. (g) Sparsity b of the neuronal loadings 981 
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on the SCs (fit to generalized normal distribution) for the original data and the substitute 982 
datasets (permutation test with n = 3×1000 permutations). (h-k) Activity measures for the SCs 983 
of the original data and the substitute datasets (permutation test with n = 1000 permutations).  984 
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 985 

Fig. 3 | The effect of distraction on sample representations 986 

(a) Top: the demixed distractor representing part used in the analysis. Bottom: distractor 987 
numerosity sparse components (SCs). Numbers indicate distractor numerosity. (b) Cosine 988 
similarity between loadings of sample numerosity SCs (blue), distractor numerosity SCs (red) 989 
and the sample-distractor interaction SC (green). (c) Activity of the two SCs identified using 990 
firing rates averaged across the second memory delay for all sample-distractor combinations 991 
without demixing the stimulus presentations. (d) Representational geometry in SC space. Blue 992 
and red colors indicate sample and distractor numerosity, respectively. (e) Neuronal loadings 993 
on the 2 SCs. Dots: joint distribution in SC space. Histograms: marginal distribution of neuronal 994 
loadings on SC1 and SC2. Inset: SI for all axes. (f-h) Same layout as in (c-e) but for PCs. 995 
Magenta arrows in (H) indicate sparse axes.  996 
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 997 

Fig. 4 | Subpopulations of neurons dominating working memory coding 998 

(a) Accuracy of cross-temporal linear discriminant analysis (LDA) decoding of sample 999 
numerosity using all recorded neurons (y axis: training, x axis: testing). (b) Neuronal loadings 1000 
on the three identified sample numerosity SCs. Colored dots indicate the 'dominant' neurons 1001 
selected in each SC (cut-off: two s.d.). The percentage of variance explained within each SC 1002 
is given for each subpopulation. (c) Accuracy of cross-temporal LDA decoding of sample 1003 
numerosity using only the dominant neurons. Compare to (a). (d) Sample numerosity 1004 
decoding accuracy using the dominant subpopulations of each SC. Same color scale in (a), 1005 
(c) and (d).  1006 
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 1007 

Fig. 5 | Subpopulation-specific electrophysiological properties 1008 

(a) Between-timepoint Pearson correlations of the trial-to-trial fluctuation of firing rates in the 1009 
fixation epoch for the three dominant subpopulations. (b) Auto-correlograms obtained by 1010 
averaging across diagonal offsets in (a). Auto-correlograms of individual neurons are given 1011 
(single lines) together with the subpopulation average and the fitted exponential decay (black 1012 
dots and line, respectively). (c) Distribution of fitted decay constants of individual neurons in 1013 
each dominant subpopulation. Inset: Kullback-Leibler divergence (DKL) between the 1014 
distribution of each subpopulation and the whole population (null distribution for significance 1015 
testing created with n = 1000 bootstraps from the whole population). (d) Coefficient of 1016 
variation (CV) of inter-spike intervals (ISI) of the dominant subpopulations and the non-1017 
dominant other neurons (two-tailed t-Test). Left: example spike trains for different CVs. 1018 
(e) Same layout as in (d) for the local variation (LV) of ISI.  1019 
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 1020 

Fig. 6 | Subpopulation-specific temporal dynamics 1021 

(a) Temporal part of the demixed neuronal activity, averaged across conditions, of each 1022 
dominant subpopulation projected onto their respective top two PCs. Time runs along the 1023 
individual trajectories (bin width 50 ms). First and second memory delay are marked in blue 1024 
and red, respectively. (b) Full signal averaged within each condition and embedded in 2D t-1025 
SNE space. Bins as in (a). (c) Euclidean distances between timepoints on the trajectory in (a) 1026 
of each subpopulation. (d) Distribution of periodicity (relative power of 1/1.5 Hz and harmonics) 1027 
of individual neurons in each subpopulation. Inset: Kullback-Leibler divergence (DKL) between 1028 
the distribution of each subpopulation and the whole population (null distribution for 1029 
significance testing created with n = 1000 bootstraps from the whole population). (e) Example 1030 
timepoints on the trajectory of the sensory subpopulation with high and low tangling. (f) Time 1031 
resolved tangling of the trajectory of each subpopulation.  1032 
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 1033 

Fig. 7 | Recurrent neural network modeling 1034 

(a) RNN model governing equation and structure. Magenta and green arrows indicate 1035 
numerosity-specific inputs and connectivity weights to be trained, respectively. (b) Model fit 1036 
(solid trajectory) to original data (dots) averaged across all conditions. (c) Percentage of 1037 
variance of the full signal explained by the model for non-structured Gaussian implementations 1038 
of numerosity representations (left bar), sparse implementations with random orientations of 1039 
sparse axes (middle bar) and sparse implementations with the same orientation of sparse 1040 
axes as in the original data (right bar). Left and right axis show explained variance relative to 1041 
the full signal and to the manipulated signal, respectively (one-way ANOVA across substitutes). 1042 
(d) Same layout as in (c) for the percentage of variance of the numerosity signal explained by 1043 
the model.  1044 
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 1045 

Fig. S1 | The effect of distraction on sample numerosity sparse components 1046 

(a) Information (standard deviation across conditions) about sample numerosity, distractor 1047 
numerosity and their interaction in each of the three sample numerosity sparse components 1048 
(SCs) in trials with a distractor. (b) Sample numerosity information as in (a) for the three SCs 1049 
in trials with and without a distractor. Shaded area indicates [2.5 %, 97.5 %] confidence 1050 
interval. Black dots indicate timepoints with significant differences (p < 0.00125, bootstrap).  1051 
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 1052 

Fig. S2 | Sample-distractor interaction sparse component 1053 

SCA performed on the demixed sample-distractor interaction part of the data identified one 1054 
component that optimally reconstructed the data using cross-validation. The activity of this SC 1055 
is shown for all sample-distractor combinations. 1056 


