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The neuronal implementation of representational
geometry in primate prefrontal cortex
Xiao-Xiong Lin1,2, Andreas Nieder3, Simon N. Jacob1*

Modern neuroscience has seen the rise of a population-doctrine that represents cognitive variables using geo-
metrical structures in activity space. Representational geometry does not, however, account for how individual
neurons implement these representations. Leveraging the principle of sparse coding, we present a framework to
dissect representational geometry into biologically interpretable components that retain links to single
neurons. Applied to extracellular recordings from the primate prefrontal cortex in a working memory task
with interference, the identified components revealed disentangled and sequential memory representations
including the recovery of memory content after distraction, signals hidden to conventional analyses. Each com-
ponent was contributed by small subpopulations of neurons with distinct spiking properties and response dy-
namics. Modeling showed that such sparse implementations are supported by recurrently connected circuits as
in prefrontal cortex. The perspective of neuronal implementation links representational geometries to their cel-
lular constituents, providing mechanistic insights into how neural systems encode and process information.
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INTRODUCTION
For decades, the dominant approach to understanding neural
systems has been to characterize the role and contributions of indi-
vidual neurons. In a recent paradigm shift, the concept of high-di-
mensional activity spaces that represent cognitive and other
variables at the level of neuronal populations has taken the center
stage and sidelined the single-neuron perspective (1–3). These pop-
ulation representations capture multineuron activity in different be-
havioral task conditions in the form of geometrical structures (4, 5).
Representational geometry provides a complete description of the
information encoded by and processed in a neuronal population.
It does not, however, account for how individual neurons, the
nuts and bolts of brain processing, give rise to the representations
and the operations performed on them (6) because there is no direct
connection between informational representation and biological
implementation at the cellular and circuit level.
In constructing representational geometries, the choice of coor-

dinate system, that is, the set of components that capture the pop-
ulation activity, is arbitrary. The question of what the most
meaningful coordinate system is to represent the data then arises.
In principal components analysis (PCA), a widely used method
for dimensionality reduction, the principal components (PCs)
capture the neuronal activity’s variance, but they are not designed
to yield biologically interpretable aspects of the representational ge-
ometry. Identifying coordinate systems that are rooted in biology is
particularly relevant in association cortices where neurons often
have mixed-selective responses that are not easily interpreted as
the representation of any single stimulus or task variable alone (4,
7). Neuronal signals in association cortices also show complex tem-
poral dynamics and task-dependent modulations that reflect dis-
tinct sensory and memory processing stages (8–10). During
working memory, for example, behaviorally relevant target items

are maintained in online storage and must be protected against in-
terfering distractors (9, 10). However, depending on which coordi-
nate system is used to express the representational geometry, the
same task-related neuronal activity could be interpreted in one of
two ways: either as components representing the target in each
task epoch individually, suggesting a memory mechanism built
on sequential relay of target information among components
(11), or, alternatively, as components that represent the target
across task epochs, suggesting a memory mechanism of continuous
representation of target information by the same components (12).
The biological implementation of representations points to how

components are accessed and information is communicated. Unlike
the units in neuronal networkmodels, in vivo neurons are subject to
anatomical and physiological constraints. There are approximately
1010 neurons in the human brain and 109 in a hypothetical func-
tional module such as the dorsolateral prefrontal cortex (PFC)
(13, 14). A pyramidal cortical neuron has on the order of 104 den-
dritic spines (15). Thus, given the disproportion between the low
number of possible connections and the large number of potentially
informative neurons, a neuron downstream of the PFC can only
“read out” from a small fraction of neurons in this region. That is,
it cannot access arbitrary components of the representational geom-
etry. Instead, it would be more efficient and biologically plausible to
read out components that a few neurons predominantly contribute
to, that is, the components with a sparse neuronal implementation.
Here, we present a framework that exploits the structure in the

representational geometry’s neuronal implementation. We show
that this approach yields components of population activity that
retain links to individual neurons and does not rely on assumptions
about specific neuronal activity patterns. We first tested for sparse
structure in the neuronal implementation and then performed data
dimensionality reduction on extracellular multichannel recordings
from the nonhuman primate PFC by leveraging sparsity constraints
to identify components that are contributed mainly by small sub-
populations of strongly coding neurons [sparse component analysis
(SCA)] (16, 17). We found that the activities on these components
nontrivially matched the working memory task sequence
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performed by the animals, revealing separate sensory and memory
components including a previously hidden component, namely, the
recovery of memory content after distraction. Notably, each compo-
nent was made up of nonoverlapping subpopulations of neurons
with distinct spiking properties and temporal dynamics. Last, neu-
ronal network modeling showed that recurrent connectivity as in
the PFC favors such sparse implementations over nonstructured
Gaussian implementations. The framework and findings presented
here bridge the gap between the single-neuron doctrine and the
neuronal population doctrine (1, 2) and establish the perspective
of neuronal implementation as an important complement to repre-
sentational geometry.

RESULTS
Different neuronal implementations of the same
representational geometry
Representational geometry abstracts the information coded by a
population of neurons from their individual tuning profiles (6). It
specifies the pairwise distances between task-related collective neu-
ronal responses but no longer reflects the exact pattern of firing
rates. This approach defines a stimulus-representing subspace. To

illustrate, we simulated representations for two stimuli A and B in
PC space, which separate, rotate, and collapse back to the
origin (Fig. 1A).
The same stimulus-representing subspace can be defined with

arbitrary sets of components. Components can be chosen to
capture specific aspects of the representation, e.g., to continuously
distinguish between stimuli (Fig. 1B) or to distinguish between
stimuli in different epochs (Fig. 1C). Note that in the former
example, the components align with the PCs, while in the latter,
they do not. Various studies have followed this approach, selecting
the components, e.g., such that they express representations sequen-
tially (18) or such that they each correspond to a particular task var-
iable of interest (19, 20).
Neuronal activity can be reconstructed by the weighted sum of

components. Every neuron has a set of weights quantifying its rela-
tion to the different components, i.e., its loadings on the compo-
nents. The loadings of neurons on the PCs visualize their
positions in implementation space (Fig. 1, D to F), where the load-
ings along any axis correspond to a component in representation
space with the same orientation (Fig. 1, A to C). The structure in
the implementation space, i.e., the distribution of loadings across
neurons, can be exploited to identify a unique, nonarbitrary set of

Fig. 1. Different neuronal implementations of the same representational geometry. (A) Representational geometry for two trials with stimuli A and B on the plane
specified by stimulus PC1 and PC2. Time runs along the individual trajectories. (B) Left: Example pair of components that express the representational geometry (magenta
arrows). Right: Activities on the corresponding components and standard deviation (SD) across components as ameasure of amount of information carried by them. Both
components represent stimulus information in both epochs. (C) Same layout as in (B) for components that each represent stimulus information in one epoch only. (D to F)
Neuronal implementation underlying the representational geometry in (A to C), specified by the distribution of neuronal loadings on the stimulus PCs. Insets: SI of all axis
orientations in the space spanned by PC1 and PC2. Axes with high SI (sparse axes, magenta arrows) in (E) and (F) correspond to the components 1 and 2 in (B) and (C),
respectively.
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components that relies on priors about anatomical connectivity
instead of on priors about activity patterns.
Representational geometry is invariant to the rotation of neuro-

nal coordinates (21). Different neuronal implementations may
therefore underlie the same representational geometry. We first
consider the scenario of a nonsparse (Gaussian) distribution of
loadings (Fig. 1D), where the standardized moments (e.g., skewness
and kurtosis) are constant, meaning there are no differences in these
distributional statistics across axis orientations. We define the spar-
sity index (SI; Fig. 1D, top inset) to denote the sparsity of the im-
plementation along a given axis. SI is proportional to a
distribution’s kurtosis and is defined as 1 for a Gaussian distribu-
tion. If SI is constant across axis orientations, then neurons do not
preferentially align to any axes.
Next, we consider a sparse distribution (Fig. 1E). Most neurons

lie around the origin of the coordinate system. However, because SI
is not constant (Fig. 1E, top inset), we can find the sparse compo-
nents (SCs) that strongly coding neurons align to. In the present
case, these sparse axes correspond to the components in represen-
tational space that code the difference between stimulus A and B
continuously (with one of the components reversing between
epochs; compare Fig. 1E with Fig. 1B). Sparse distributions can
exist for arbitrary axis orientations. For example, strongly coding
neurons could align to the components that sequentially represent
the stimulus information in epoch 1 and epoch 2 (compare Fig. 1F
with Fig. 1C).
Although both scenarios are characterized by sparse neuronal

implementations, we note that they have fundamentally different
implications for readout, lending particular importance to the po-
sitioning of sparse axis orientations. Continuous readout [Fig. 1, B
and E (component 1)] is stable but not optimized for either epoch 1
or epoch 2, whereas sequential readouts (Fig. 1, C and F) are more
precise at the respective epochs, but not stable across epochs. In
summary, the perspective of neuronal implementation offers a
way to connect representational geometries to their cellular constit-
uents, revealing mechanistic insights into how a neural system
encodes, processes, and relays information.

The neuronal implementation of working memory
With this framework, we now examine neuronal implementation of
working memory, a core cognitive function for online maintenance
and manipulation of information in the absence of sensory inputs.
Extracellular multichannel recordings were performed in the lateral
PFC of two monkeys trained on a delayed-match-to-numerosity
task, requiring them to memorize the number of dots (i.e., numer-
osity) in a visually presented sample and resist an interfering dis-
tracting numerosity (Fig. 2A) (10). A total of 467 single units
recorded across 78 sessions were included in the analysis. Spike
rates were binned, averaged across conditions of the same type,
and demixed into their constituent parts (Fig. 2B) (22). Because
the task design was balanced (i.e., all sample-distractor combina-
tions were included), the different task variables were statistically
independent of each other. Demixing therefore allowed to isolate
and analyze signal components that would otherwise be overshad-
owed by signals that dominate the raw firing rates. Across neurons,
the neuronal activities coding for trial time, sample numerosity, dis-
tractor numerosity, and the sample-distractor interaction accounted
for 72.7, 8.7, 5.8, and 12.9% of the total variance, respective-
ly (Fig. 2B).

We first focused on the representation of the sample numerosity
throughout the trial, the crucial function for completing the task
(Fig. 2C). In PC space, the representations of different numerosities
(1 and 4 visualized here) started to separate, marking an increase of
the information during sample presentation. Then, the representa-
tions rotated and returned to the origin. Similar representational
changes have been reported previously (11, 23, 24).
The distribution of loadings of individual neurons onto the first

three PCs was highly non-Gaussian (P < 0.001; Henze-Zirkler mul-
tivariate normality test; Fig. 2D). Accordingly, the SI was not
uniform across all axis orientations (Fig. 2D, inset). The sparsity pa-
rameter β fit to neuronal loadings on randomly chosen axes was sig-
nificantly smaller than the β of a Gaussian distribution, indicating
sparser distributions (P < 0.001; bootstrap; Fig. 2E). These analyses
confirmed the presence of sparse structure in the neuronal
implementation.
Using SCA that identifies components with sparse distributions

of neuronal loadings (SCs), we found three SCs that optimally de-
composed the sample numerosities’ representational geometry (i.e.,
the minimum number of components that retained 95% of the
maximal explained variance). The SCs displayed temporally well-
defined active periods that matched the task structure and tiled
the duration of a trial (Fig. 2F). Intuitively, they correspond to com-
ponents for sensory encoding, memory maintenance, and memory
recovery following distraction, in accord with the scenario of se-
quential representations [compare to Fig. 1 (C and F)].
To control for the possibility that noise in nonsparse implemen-

tations is mistaken for structure by SCA, we created substitute data-
sets with random Gaussian implementations (i.e., Gaussian
distributions of neuronal loadings) while keeping the representa-
tional geometry intact and then systematically compared the origi-
nal SCs with the substitute SCs (example substitute SCs in Fig. 2G).
First, the loadings on the three sparse axes in the original data were
sparser than the loadings on the sparse axes in the Gaussian substi-
tutes (P < 0.001 for all three sparse axes; permutation test with n = 3
× 1000 permutations; Fig. 2H). Second, compared to the substitutes,
the SCs in the original data showed temporally restricted sample
representations with shorter spread [P = 0.002; permutation test
with n = 1000 permutations; same as for Fig. 2 (I to K); Fig. 2I],
less temporal overlap with each other (P = 0.003; Fig. 2J), and less
reversal of sample numerosity tuning (P = 0.030; Fig. 2K), suggest-
ing that the observed SCs’ activity was more sequential than that of
the SCs obtained from substitutes with a random Gaussian imple-
mentation. Third and last, the SCs were closer to orthogonal than
the substitutes (P = 0.019; Fig. 2L), demonstrating that the observed
implementation is more efficient than a random implementation.
In addition, to verify that the sequential representation was not

an artifact of SCA, we constructed three continuously active com-
ponents from the original representational geometry and then
created synthetic neurons such that the distribution of their load-
ings on these components were sparse. SCA was able to recover
those continuous components and did not produce sequential rep-
resentations (fig. S1).
In summary, the neuronal implementation of the sample nu-

merosities’ representational geometry was structured and sparse.
The activities on the SCs demonstrated sequential rather than con-
tinuous coding of working memory content, indicating that the
change of behavioral demands in the course of the trial triggers a
switching of informative subpopulations.
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Fig. 2. The neuronal implementation of working memory. (A) Delayed-match-to-numerosity task with distractors. (B) Demixing procedure separating the activity of
each neuron into the parts coding time, sample numerosity, distractor numerosity, and sample-distractor interaction. The sample coding part is used for the following
analyses. Top: Percentage of explained variance for each part. (C) Representational geometry for sample numerosities 1 and 4 in PC space, averaged across trials of the
same condition. (D) Loadings of all recorded neurons on the top three PCs (black dots) including distributions projected onto the planes formed by PC pairs (gray dots).
Sparse axes (magenta arrows; determined by SCA) have high SI. Inset: Surface plot of SI for all axes in the space. (E) Sparsity parameter β for neuronal loadings on
randomly selected axes (n = 1000 bootstraps) compared to the β of a Gaussian distribution. (F) Activity of the three identified SCs, averaged across trials for each
sample numerosity condition (top; numbers indicate sample numerosity) and relative information across conditions measured as SD. (G) SCs of an example substitute
dataset with nonsparse Gaussian implementation. (H) Sparsity β of the neuronal loadings on the SCs for the original data and the substitute datasets (permutation test
with n = 3 × 1000 permutations). (I to L) Activity measures for the SCs of the original data and the substitute datasets (permutation test with n = 1000 permutations). a.u.,
arbitrary units.
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The effect of distraction on sample numerosity
representations
The lack of an SC that continuously represented the behaviorally
relevant sample numerosity throughout the trial was intriguing,
tapping into the question of stable versus dynamic memory
coding (11, 12, 25–27). We therefore investigated the influence of
distraction on sample number coding in more detail.

First, we applied SCA to the demixed distractor coding part of
the data (Fig. 3A, top). Two SCs were obtained that were sequen-
tially active during presentation and maintenance of the distractor
numerosity, respectively (Fig. 3A, bottom). These components re-
sembled the sensory and memory sample coding SCs (compare to
Fig. 2F), suggesting that target and distracting information initially
occupied similar resources despite their distinct behavioral rele-
vance. Supporting this hypothesis, we found strongly overlapping

Fig. 3. The effect of distraction on sample representations. (A) Top: The demixed distractor representing part used in the analysis. Bottom: Distractor numerosity SCs.
Numbers indicate distractor numerosity. (B) Cosine similarity between loadings of sample numerosity SCs (blue), distractor numerosity SCs (red), and the sample-dis-
tractor interaction SC (green). (C) Activity of the two SCs identified using firing rates averaged across the second memory delay for all sample-distractor combinations
without demixing the stimulus presentations. (D) Representational geometry in SC space. Blue and red colors indicate sample and distractor numerosity, respectively. The
blue and red arrows visualize the sample and distractor coding axes, respectively. (E) Neuronal loadings on the two SCs. Dots, joint distribution in SC space; histograms,
marginal distribution of neuronal loadings on SC1 and SC2. Inset: SI for all axes. (F to H) Same layout as in (C to E) but for PCs. Magenta arrows in (H) indicate sparse axes.
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neuronal loadings between sample SCs and distractor SCs (cosine
similarity; 0.69 and 0.57 for the sensory and memory components,
respectively; Fig. 3B) with displacement of sample information by
distractor information as the trial evolved (fig. S2A, top and
middle). However, in contrast to the sample sensory and memory
components, the sample recovery SC was unique and did not share
loadings with any other SC (Fig. 3B). Furthermore, the sample re-
covery SC was not influenced by distractor information and carried
sample information until test numerosity presentation (fig. S2A,
bottom). More activity in the sample sensory and recovery SCs
was observed in trials with a distractor than in trials without a dis-
tractor (fig. S2B). Conversely, sample information was lower in the
memory component when a distractor was presented.
Second, we applied SCA to the sample-distractor interaction part

of the data. One SC was identified. Its activity was most pronounced
when the sample and distractor numerosity were the same (fig.
S2C). The neuronal loadings on this SC did not overlap with the
loadings on sample or distractor SCs (Fig. 3B), suggesting that the
boost in numerosity information was generated by a dedicated sub-
population responding to a repeated presentation of the same
number, instead of changing the activity of the sample representing
neurons.
Together, these results indicate a (partially) shared capacity for

sample and distractor representations during the sensory input and
subsequent memory delay stages. The invasion of distractor infor-
mation necessitated the recruitment of an extra component, the re-
covery component, to maintain sample information in working
memory. This also occurred on trials without a distractor (fig.
S2B). We speculate that this was because our task design included
80% of trials with a distractor. In other words, the animals were ex-
tensively trained to expect and handle memory interference. The
extent of recovery could be different in a task design with more ba-
lanced distractor trials.
So far, all analyses were performed on separated (demixed) rep-

resentations. We next investigated whether sample and distractor
information could be equally disentangled using SCA alone
without demixing the numerosity coding signal (Fig. 3C). SCA per-
formed on firing rates averaged across the second memory delay re-
covered two SCs that each selectively captured sample and distractor
information (Fig. 3C). The corresponding representational geome-
try was grid-like. The grid was nonuniformly spaced, reflecting the
size effect in analog magnitude estimation (28). The sample coding
axes had similar orientations for each distractor and vice versa
(Fig. 3D), reflecting factorized sample and distractor representa-
tions. Notably, the sample coding axes and distractor coding axes
aligned well to the corresponding SC. This was not enforced by
our analytical method, arguing that the PFC spontaneously disen-
tangles target and distractor representations in working memory.
The underlying implementation showed clear sparse structure in
the neuronal loadings onto these components (Fig. 3E; SI).
For comparison, PCA, which is insensitive to the neuronal im-

plementation, was unable to recover factorized components
(Fig. 3F). The grid-like geometry was still largely preserved, but it
did not align with the PCs (Fig. 3G). In contrast to SCA, PCA did
not identify the components with the sparsest loadings (Fig. 3H).

Subpopulations of neurons dominating working memory
representations
Next, we investigated whether the implementation was sparse
enough to be able to reliably reconstruct the population-level
sample representation using only a small fraction of neurons. We
performed cross-temporal linear discriminant analysis (LDA) to
decode sample numerosity at a given time point in the trial using
training data from a different time point (Fig. 4). Decoding accuracy
therefore quantifies the degree to which the representation is trans-
ferable. With four numerosities, chance level accuracy is 25%. Using
the entire population of 467 recorded neurons, we found a dynamic
code for the sample numerosity with good within-epoch transfer
but very little generalization across epochs, particularly from the
first to the secondmemory delay (Fig. 4A). In line with our previous
results, this finding suggests that working memory representations
are nonuniform and that distinct, complementary processes are re-
quired to protect behaviorally relevant information from
interference.
We selected the neurons that contributed most to the previously

identified SCs (loading on the SC larger than two SDs; Fig. 4B).
Thirty-six, 28, and 28 single neurons passed the criterion for the
sensory, memory, and recovery SC, respectively. Although each sub-
population composed only 6 to 8% of the entire recorded popula-
tion, these dominant neurons explained 88, 82, and 87% of their
respective component’s variance (sum of squares of dominant
neurons’ loadings over sum of squares of all neurons’ loadings).
Overlapping membership in two subpopulations was very rare
(no more than three neurons in any SC pair; Fig. 4B).
Cross-temporal LDA using only the dominant neurons showed a

very similar sample numerosity decoding pattern as with the entire
population (Fig. 4C, compare to Fig. 4A), confirming that the
decoder previously relied mainly on this small subset of neurons.
When all the dominant neurons were removed, the sample numer-
osity neuronal representation did not generalize within epochs,
instead changing rapidly across time (fig. S3A). This suggested
that the dominant neurons were responsible for the stable sample
representation within each task epoch. The sensory subpopulation
contributed to decoding in particular during the sample and test
numerosity presentation but showed very little activity in the
memory epochs (Fig. 4D, top). The memory subpopulation domi-
nated in the first delay but unexpectedly was not involved in sample
coding during the second delay (Fig. 4D, middle). Instead, after dis-
traction, the recovery subpopulation was exclusively responsible for
carrying sample information (Fig. 4D, bottom). This suggests that
these neurons crucially contribute to shielding workingmemory in-
formation from interference (see also fig. S2).
Distractor information could also be decoded from the popula-

tion (fig. S3B). Successful cross-stimulus decoding (training on
sample numerosity and testing on distractor numerosity; fig. S3C)
implied that the neurons that represented sample numerosity in the
sample epoch and in the first memory epoch turned to represent the
distractor in the same fashion in later epochs, consistent with our
previous result of overlapping neuronal loadings for distractor
and sample components with the notable exception of the sample
recovery component (Fig. 3B).
Last, to further validate our results, we examined specifically

whether a stable representation of sample information across both
memory delays could be implemented by a unique neuronal subpo-
pulation. No single neurons had high loadings on both the memory

SC I ENCE ADVANCES | R E S EARCH ART I C L E

Lin et al., Sci. Adv. 9, eadh8685 (2023) 13 December 2023 6 of 18

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 13, 2023



and recovery components (fig. S4A; no data points in the top right
and bottom left corner). This was also reflected in the low SI of the
loading distribution on the diagonal (fig. S4A, inset). Accordingly,
LDA decoders trained to decode sample information continuously
across both memory epochs relied on more neurons (58 neurons)
than the decoders trained in the first memory delay (23 neurons) or
in the second memory delay (36 neurons; fig. S4B). This result sug-
gests that a continuous representation of sample information across
epochs was effectively implemented by the summation of two se-
quential components.

Subpopulation-specific spiking properties
Above, we identified dominant neurons based on their stimulus se-
lectivity. We now investigated whether their different roles in rep-
resenting sample information were possibly mirrored by distinct
spiking properties.
First, we calculated the across-trial similarity (Pearson correla-

tion) between each neuron’s activity at different time points in
the fixation period to derive the intrinsic time scale, a measure con-
sidered to index a neuron’s ability to maintain memory traces (29).
Representative neurons from all three subpopulations are shown
(Fig. 5A). The example recovery neuron had a substantially larger
spread from the diagonal than the sensory andmemory neuron, i.e.,
its activity in distant time points was more strongly correlated, thus
signifying a longer time constant (Fig. 5A, bottom). For each sub-
population, an exponential decay was fitted to the mean correlation
coefficient across neurons (Fig. 5B). The recovery subpopulation
had the largest time constant τ (165, 127, and 338 ms for sensory,
memory, and recovery neurons, respectively). The distribution of τ
values in the recovery population also stood out from the distribu-
tions observed in subsampled subpopulations of PFC neurons,
whereas the sensory and memory neurons’ distributions were not
significantly different [P = 0.874, P = 0.455, and P = 0.002 for
sensory, memory, and recovery subpopulations, respectively; Kull-
back-Leibler (KL) divergence with bootstraps; Fig. 5C].
Next, we investigated spike train statistics using the interspike

intervals (ISIs) measured during the neurons’ entire recording life-
time. The coefficient of variation (CV)measures the irregularity of a
spike train (Fig. 5D). CVs of all recorded neurons were larger than 1
(i.e., more irregular than a Poisson process) with a gradual increase
of spiking irregularity across the sensory, memory, and recovery
subpopulations. CVs in the recovery neuron population were signif-
icantly larger than in the sensory subpopulation (P = 0.030, two-
tailed t test; Fig. 5D), possibly reflecting their unique temporal dy-
namics. The local variation (LV) measures local ISI differences and
complements CV, which is a global measure. LV reflects the insta-
bility of firing at a small time scale. LVs in all dominant neurons
were smaller than 1 (i.e., less LV than a Poisson process) and signif-
icantly lower than in the noncoding PFC population (P < 0.001,
two-tailed t tests; Fig. 5E), potentially underlying their ability to
stably represent sample information within epochs via persistent
activity.
These distinct spiking properties likely reflect the distinct local

circuitry each dominant subpopulation is embedded in. Notably,
these measures were not involved in the original selection of sub-
populations and therefore lend support to the notion that the im-
plementation structure carries biological meaning.

Subpopulation-specific temporal dynamics and
representation of context
There was no perceptual cue in the working memory task specifying
the difference between sample and distractor. This forced the
animals to internally keep track of a trial’s temporal evolution. To
investigate whether temporal dynamics and context played a role in
supporting the subpopulation-specific stimulus representations, we
next analyzed the temporal part of the demixed signal.
The temporal part drove most of the variability (72.7%) of the

firing rates in the recorded population and occupied a higher-di-
mensional space than the sample coding part (fig. S5A). Neuronal
loadings on random axes within this space were sparse (P < 0.001;

Fig. 4. Subpopulations of neurons dominating working memory coding. (A)
Accuracy of cross-temporal LDA decoding of sample numerosity using all recorded
neurons. (B) Neuronal loadings on the three identified sample numerosity SCs.
Colored dots indicate the “dominant” neurons selected in each SC (cutoff: 2 SD).
The percentage of variance explained within each SC is given for each subpopu-
lation. (C) Accuracy of cross-temporal LDA decoding of sample numerosity using
only the dominant neurons. Compare to (A). (D) Sample numerosity decoding ac-
curacy using the dominant subpopulations of each SC. Same color scale in (A), (C),
and (D).
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bootstrap; fig. S5B). We therefore also applied SCA to the temporal
part and found that the SCs exhibited a variety of distinct activity
patterns modulated by the individual trial events (fig. S5C). In each
of the sample coding dominant subpopulations, the temporal part
formed unique trajectories (Fig. 6A). In the sensory subpopulation,
the trajectory followed a periodic, quasi-circular course (Fig. 6A,
top). The first and second memory epochs overlapped almost en-
tirely. This indicates that the sensory neurons did not distinguish
between the time periods after sample and after distractor presen-
tation. The trajectory of the memory subpopulation was less period-
ic but intertwined in the first and second memory epochs (Fig. 6A,
middle). In contrast, the trajectory of the recovery subpopulation
was less intertwined, with most time points distinguishable from
each other, especially the first and second memory epochs, signify-
ing a better representation of the contextual difference following
sample and distractor presentation (Fig. 6A, bottom).
Overlap of the memory epochs in the sensory and memory sub-

populations could be due to the limitations of a linear projection
and the emphasis of PCA on global structure. We therefore per-
formed nonlinear embedding using t-distributed stochastic neigh-
bor embedding (t-SNE; two-dimensional embedding; perplexity =
30; Fig. 6B). This analysis revealed comparable structures as the
linear projection, with the first and second memory epochs separat-
ed only in the recovery neuron subpopulation.
To further investigate the temporal evolution of neuronal activ-

ity, we measured the Euclidean distances between individual time
points in each subpopulation (full space; Fig. 6C). All distance ma-
trices displayed a strong diagonal, reflecting the fact that close-by

time points were represented similarly. Notably, there were also
strong offset diagonals in the sensory subpopulation, meaning
that activity in these neurons repeated with a cycle of about 1.5 s,
the interval between sensory onsets (sample, distractor, and test nu-
merosities). Furthermore, activity in the sensory and memory
epochs differed the most in this subpopulation. These patterns
were present, albeit weaker, in the memory subpopulation, but
absent in the recovery neurons. We quantified periodicity for
each neuron by computing the relative power of 1/1.5 s (0.67 Hz)
activity and its harmonics normalized to the power of the full fre-
quency spectrum (Fig. 6D). If a neuron responded in the same way
to all trial events, its periodicity would be high. Conversely, if a
neuron showed different responses to the different trial events, its
periodicity would be low. In other words, the periodicity measure
quantifies how sensitive a neuron is to differences in temporal
context. Compared to randomly sampled subpopulations of PFC
neurons, the sensory subpopulation and the recovery subpopulation
showed significantly different (higher and lower, respectively) peri-
odicity (P < 0.001, P = 0.051, and P = 0.043 for sensory, memory,
and recovery subpopulations, respectively; KL divergence with
bootstraps; Fig. 6D, inset).
Neuronal activity is not static and temporally independent.

Instead, firing rates at every time point depend on previous time
points. To characterize the dynamical properties of the recorded
PFC population in more detail, we used the measure of tangling
(30). Tangling measures the extent to which the velocity (direction
and speed) of a given state on a trajectory diverges from the velocity
of its neighboring states (Fig. 6E), reflecting the level of

Fig. 5. Subpopulation-specific spiking properties. (A) Between–time point Pearson correlations of the trial-to-trial fluctuation of firing rates in the fixation epoch for
the three dominant subpopulations. (B) Autocorrelograms obtained by averaging across diagonal offsets in (A). Autocorrelograms of individual neurons are given (single
lines) together with the subpopulation average and the fitted exponential decay (black dots and line, respectively). (C) Distribution of fitted decay constants of individual
neurons in each dominant subpopulation. Inset: Kullback-Leibler divergence (DKL) between the distribution of each subpopulation and the whole population (null dis-
tribution for significance testing created with n = 1000 bootstraps from thewhole population). (D) CV of ISIs of the dominant subpopulations and the nondominant other
neurons (two-tailed t test). Left: Example spike trains for different CVs. (E) Same layout as in (D) for the LV of ISI.
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unpredictability and instability (chaos) in the system. High tangling
means that a small disturbance in the current state would lead to
large changes in the next state (difference of derivatives of neighbor-
ing points). The instability or inability to determine the next state
from the current state (i.e., high tangling) indicates that other neu-
ronal populations or external stimuli may drive the trajectory. Con-
sequently, tangling was increased following the onset and offset of
sensory input in all three subpopulations. Tangling was highest,
however, in the sensory subpopulation and lowest in the recovery
subpopulation (sensory versus memory, P < 0.001; memory
versus recovery, P = 0.013; two-tailed t test across all trial time
points; Fig. 6F).
In summary, these results suggest that the subpopulation of re-

covery neurons keeps a record of time and temporal context, which
could contribute to these neurons’ ability to separate sample and
distractor information. In contrast, the sensory subpopulation, as
well as the memory subpopulation to a lesser degree, is character-
ized by its strong input-driven temporal dynamics, which is consis-
tent with these neurons’ passive representation of numerosity
regardless of it being behaviorally relevant (sample) or irrelevant
(distractor).

Sparse implementations favored in recurrent circuits
The decomposition we used is mathematically equivalent to a feed-
forward neural network (linear autoencoder with one hidden layer)
(31). In the feed-forward case, sparse connections directly lead to
sparse neuronal loadings. With the addition of more layers, the

neuronal loadings could finally approximate a nonsparse (Gauss-
ian) distribution. The PFC is a highly recurrent, rather than
purely feed-forward, brain region (32). The recurrent connections
could, in effect, function as multiple feed-forward layers, potentially
allowing a neural network with sparse connections to produce non-
sparse (Gaussian) neuronal loadings equally well. To address this,
we created synthetic datasets with different sparsity of neuronal
loadings and tested whether a recurrent neural network (RNN)
model would still favor sparse implementations.
The RNN model was trained to reproduce the target (to-be-

fitted) neuronal firing rate sequences of each sample-distractor
combination (Fig. 7A). The model consists of 467 neurons (to
match the recorded population) receiving inputs of stimulus infor-
mation according to the task structure. The model learns the recur-
rent connectivity W among the neurons. W summarizes the
influence of the current time point’s firing rates r on the firing
rates of the next time point. An indicator vector n (one nonzero
entry) represents the sample and distractor numerosity, activating
the numerosity-specific input in I to the entire neuronal population.
To reflect the absence of an explicit visual cue that differentiates
between sample and distractor in the task design, sample and dis-
tractor numerosity share the same input channel I. The contextual
difference is left for the model to resolve. The intercept term b cap-
tures the baseline activity of each neuron.
We first trained the model on the original dataset and visualized

the trajectory of the output averaged across all conditions (Fig. 7B).
The model reproduced the original dataset well, capturing 85.7% of

Fig. 6. Subpopulation-specific temporal dynamics. (A) Temporal part of the demixed neuronal activity (averaged across conditions) of each dominant subpopulation
projected onto their respective top two PCs (explained variance: 52.5 and 21% in the sensory subpopulation, 39.4 and 23.5% in the memory subpopulation, and 44.3 and
22.5% in the recovery subpopulation). Time runs along the individual trajectories (bin width, 50 ms). First and second memory delays are marked in blue and red, re-
spectively. (B) Full signal averaged within each condition and embedded in 2D t-SNE space. Bins as in (A). (C) Euclidean distances between time points on the trajectory in
(A) of each subpopulation. (D) Distribution of periodicity (relative power of 1/1.5 Hz and harmonics) of individual neurons in each subpopulation. Inset: DKL between the
distribution of each subpopulation and the whole population (null distribution for significance testing created with n = 1000 bootstraps from the whole population). (E)
Example time points on the trajectory of the sensory subpopulation with high and low tangling. (F) Time-resolved tangling of the trajectory of each subpopulation.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Lin et al., Sci. Adv. 9, eadh8685 (2023) 13 December 2023 9 of 18

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 13, 2023



total variance. Next, we created substitute datasets with altered im-
plementations of numerosity representations (xsample + xdistractor +
xsd interaction) for the model to fit. The temporal part of the demixed
data was unchanged. Three different implementations were created:
first, a nonsparse Gaussian distribution of neuronal loadings and no
alignment to any components (compare to Fig. 1D), second, a dis-
tribution with the same degree of sparsity as the original data but
with sparse axes randomly rotated to align to other components
(compare to Fig. 1E), and third, a substitute with the same sparse
distribution of neuronal loadings as in the original data (compare
to Fig. 1F).
The model captured an increasing proportion of variance of the

full signal across the three substitutes [P < 0.001; one-way analysis of
variance (ANOVA); Fig. 7C]. The absolute differences in explained
variance were comparatively small (left axis) but remarkable in re-
lation to the variance of the manipulated signal (right axis) and
given that the representational geometry was unchanged and iden-
tical for all substitutes (compare to Fig. 1). A comparable result was
obtained for the explained variance of the numerosity coding part
(P < 0.001; one-way ANOVA; Fig. 7D). Together, these results dem-
onstrate that sparse implementations of working memory represen-
tations are favored by neural networks with recurrent circuits, the
characteristic wiring motif of association cortices such as the PFC.

DISCUSSION
We presented a framework to examine the contributions of individ-
ual neurons to population-level responses in representation space
and to utilize its implementation structure. We identified heavy-
tailed (i.e., sparse) distributions of neuronal loadings on compo-
nents that captured disentangled and sequential memory represen-
tations including the recovery of memory content after distraction.
The switching of working memory components circumvented in-
terference. These components could be traced to small subpopula-
tions of neurons with distinct spiking properties and temporal
dynamics. Modeling showed that such sparse implementations
with sequentially active components are supported by recurrently
connected networks.

Bridging population activity and neuronal implementation
Population-level activity and representational geometry were previ-
ously studied without forming direct links to individual neurons (4–
6, 33). However, while single-neuron selectivity measures have the
advantage of being more easily connected to biological properties
such as cell type, receptor expression and axonal projection
targets, they are typically chosen based on intuition and past expe-
rience and only partially or indirectly reflect the full representation-
al space (10, 34).
Our SCA framework (Fig. 1) combines the advantages of both

perspectives. It builds on representational geometry for a compre-
hensive account of the data and then links the relevant coding di-
mensions in the activity space to populations of strongly
contributing neurons, which allows relating the population-wide
activity patterns to tangible physiological measures.

Capturing biologically meaningful dimensions in
activity space
SCA examines neuronal implementation without the need to man-
ually construct the components to which individual neurons con-
tribute (4, 19). SCA is not limited regarding the number of
selectivity indexes to examine at a time; it does not require temporal
averaging, allowing us to investigate datasets with rich temporal
modulation and higher-dimensional stimulus coding; it does not
overweigh neurons with low selectivity, effectively discarding
noise. Conversely, sparse loadings can be overlooked by selecting
a limited set of selectivity indexes and averaging across time (4),
which is equivalent to examining theweighted sums of the indepen-
dent sources. This can introduce a bias in neuronal loadings toward
a Gaussian distribution following the central limit theorem. In ad-
dition, by ascribing equal significance to neurons with small load-
ings and neurons with large loadings, susceptibility to noise
increases, which is typically Gaussian distributed (4). In contrast,
SCA addresses these shortcomings, making it well suited for detect-
ing sparse implementation structures and investigating datasets
with rich temporal modulation and higher-dimensional stimu-
lus coding.
By exploiting neuronal implementation, SCA identifies a unique

set of activity components without assuming the underlying activity
patterns (instead assuming sparse contributions). SCA can there-
fore capture a more complete set of activity variables (dimensions),
most notably the temporal modulation of stimulus coding. This
reduces bias otherwise introduced by selecting specific time
windows, across which neuronal activity is averaged, and

Fig. 7. RNNmodeling. (A) RNNmodel governing equation and structure. Magenta
and green arrows indicate numerosity-specific inputs and connectivity weights to
be trained, respectively. (B) Model fit (solid trajectory) to original data (dots) aver-
aged across all conditions. (C) Percentage of variance of the full signal explained by
the model for nonstructured Gaussian implementations of numerosity representa-
tions (left bar), sparse implementations with random orientations of sparse axes
(middle bar), and sparse implementations with the same orientation of sparse
axes as in the original data (right bar). Left and right axis show explained variance
relative to the full signal and to the manipulated signal, respectively (one-way
ANOVA across substitutes). (D) Same layout as in (C) for the percentage of variance
of the numerosity signal explained by the model.
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acknowledges the role of different response dynamics for informa-
tion coding (20, 35). Furthermore, incorporating temporal modula-
tion renders analyses more robust to noise (36), which is usually
Gaussian and could hide the structure in implementation.
The implementation’s sparse structure is a result of biological

constraints regarding the connections among individual neurons.
The approximately 104 dendritic spines on each cortical neuron
(15) define an upper limit for the number of neurons it could
read out from. The 109 neurons in a cortical region such as
human PFC (13, 14) and even submodules with one to two magni-
tudes fewer neurons therefore cannot be reached directly.
Sparse implementations are more efficient in terms of the re-

quired energetic demand for establishing readout connections.
Neurons are not randomly connected. It is reasonable that the
readout neurons would connect to the strongest representing
neurons, especially when the animals have been extensively
trained on a task and neural plasticity allows for adopting a more
efficient code. A dense representation on the other hand would
entail wasting considerable amounts of computational resources
on the neurons with no appropriate connections to the readout
neurons. This would prevent representing a wide range of other in-
formation in the same neuronal population.
The addition of one connection step would allow reaching the

majority of PFC neurons but at the cost of producing a layer of
104 to 105 neurons that are dedicated exclusively to feeding the
single hypothetical downstream neuron. This is prohibitively inef-
ficient. In such polysynaptic chains, it is more likely that meaningful
representations have already emerged in intermediate layers as a
result of direct connections from the source region. This notion is
also in line with the high dimensionality and nonlinear mixed se-
lectivity characteristic of PFC, which allow for direct linear readout
of complex representations without further computations (7).
Neurons share inputs and have local recurrent connections,

which are particularly pronounced in association cortices such as
the PFC (32), resulting in more similar firing patterns among
neurons within cortical regions. Consequently, neurons might
display activity that is weakly correlated to some components of
the representational geometry, although they do not participate in
the readout. This emphasizes the importance of truncating neurons
with weak loadings and enforcing sparsity constraints for estimating
potential readout connections (Fig. 4) and motivates the use of dy-
namical systems modeling to validate correlative measures (Fig. 7).
Beyond reducing energetic demands, sparse implementations

offer additional advantages. First, sparsity minimizes the neuronal
overlap between representations of distinct stimuli, thereby mitigat-
ing interference by segregating inputs across distinct neuronal
groups. Second, sparsity calibrates the trade-off between discrimi-
nation and generalization, i.e., allowing neural systems to differen-
tiate similar inputs while maintaining consistent responses to noisy
variations of the same input (37). We identified approximately 30
dominant neurons for each component out of nearly 500 recorded
neurons, a level of sparsity that aligns well with previously suggested
optimal levels necessary to balance discrimination and generaliza-
tion for efficient cognitive processing (37).
Last, the degree of sparsity might reflect an animal’s training ex-

perience and behavioral strategy. Previous studies have found that
in the inferotemporal lobe, familiar stimuli are more sparsely rep-
resented than novel stimuli (38, 39). Conversely, in the PFC, flexible
behaviors are associated with sparser representations of task

information than behaviors that are repeated routinely (3). These
findings suggest that the neuronal implementation is indicative of
the specific computations unique to each cortical region.

Workingmemory persistencewithout neuronal persistence
Applied to working memory maintenance in the face of distraction,
our framework uncovered a sequential representation of numeros-
ity information across multiple task epochs (Fig. 2). This result was
neither encouraged nor guaranteed by SCA. This suggests that the
readout of memory content from the PFC is optimized for accuracy
in each behavioral context rather than optimized for stability across
task epochs. The distractor occupied the same resources as the
sample numerosity with regard to the sensory and memory compo-
nent (Fig. 3). Subsequently, an additional component, the recovery
component, was recruited to maintain sample information and po-
tentially provide a more response-potent representation (12, 40).
Thus, working memory content was maintained by distinct mech-
anisms before and after interference (Fig. 4).
The subpopulation of recovery neurons was characterized by

spiking properties that set these neurons apart from the other pop-
ulations and could render them particularly suited to working
memory storage. Their longer intrinsic time scales (Fig. 5) suggest
more stable memory retention (26, 29, 41) and are consistent with
their representing memory content later in the trial (26). These
neurons also distinguished between sample and distractor contexts,
which is crucial for determining what information to keep and what
information to discard (Fig. 6). The contextual signal was additively
mixed with the numerosity coding signal in these neurons but
might still act as gain modulation for numerosity information
given the neuronal input-output nonlinearity (42).
Representing memory content by sequentially active subpopula-

tions is advantageous. With relay of information, a result of locally
feed-forward connectivity, a network can maintain multiple inputs
from previous time points and show more resistance to noise (43).
Furthermore, the PFC might be nonlinearly mixing context and
memory representations in all possible ways, expanding dimension-
ality to enable flexible readout (7). Extensive training could have
strengthened the nonlinear mixture of second memory epoch
context and sample numerosity representations that was most im-
portant in the current task, with the PFC retaining other mixtures
(e.g., the component coding for sample numerosity in the first
memory epoch) for other behavioral demands. In this view, the sub-
population of memory neurons could function as a more passive
short-term memory storage oblivious to the behavioral relevance
of the memorized information.
We note that our finding of sequentially active components does

not argue against stable working memory representations (24, 44,
45). The memory and recovery components stably encoded
working memory content within task epochs (Fig. 4). Working
memory representations across epochs, however, were not imple-
mented by a single subpopulation of neurons but three distinct sub-
populations. Introducing distraction into the memory delay
unmasked the crucial role of recovery neurons for working
memory maintenance, which would have been hidden in simpler
tasks without distractors. Unlike in previous studies (11, 12), our
numerical stimuli were cognitively more demanding, the distractor
was presented in the same visual format as the sample, and the dis-
tractor was not explicitly cued. These could have resulted in a stron-
ger effect of interference that fully occupied the memory
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component and forced sequential representations, whereas in other
task designs, the level of distractionmight still have allowed neurons
to continuously represent sample information across the trial (11,
12). This highlights the importance of including richer temporal
structure, multiple processing stages, and behavioral perturbation
into cognitive task designs to enable dissection of higher-order
brain functions in finer detail and sampling from the full spectrum
of underlying mechanisms.

Alternative implementation structures
We focused here on detecting sparse structure in the representation-
al geometry’s neuronal implementation, which is linked to the stan-
dardized moment of kurtosis. Consequently, the loading
distributions have both positive and negative heavy tails. Reading
out a given SC thus requires both excitatory and inhibitory connec-
tions. However, long-range corticocortical projections are mainly
excitatory. This means that other selection criteria that capture non-
symmetrical structure such as the standardized moment of skew-
ness should also be explored (46, 47).
Structure could be in the form of disjointed cell clusters (34) or a

mixture of Gaussians (42). However, if present, these structures
would not dissect the representational geometry, as they do not
have a one-to-one relation to the dimensions in the activity space.
Our neuronal implementation followed a unimodal Laplace distri-
bution (Fig. 2H) instead of a multimodal distribution.
Structure can also be investigated when there are no prior as-

sumptions about the underlying distributions of neuronal loadings.
For example, given that neuronal firing is energy-consuming and
non-negative, possibly encouraging neurons to align to the dimen-
sions of the representational geometry that have shorter ranges of
variation, nonuniform distributions of the number of selective
neurons across different dimensions can arise (48). However,
because all neurons are counted equally, structure probed nonpara-
metrically could potentially be clouded by the large number of
weakly coding (nondominant) neurons and thus difficult to
detect, particularly in PFC (4).

Relation of SCA to other linear dimensionality
reduction methods
Different linear dimensionality reduction methods based on L2 re-
construction loss will yield comparable representational geometries,
but they will not find the same projections of the representational
geometry, i.e., the same components or the same coordinate system
in which the data are expressed. The PCs of PCA are conveniently
orthogonal and ranked by variance (49), but usually, neither corre-
spond to task-related components nor align to the activity of indi-
vidual neurons (50). Sparse PCA requires the factors to be linear
projections of the original data and thus only utilizes the covariance
among neurons. Therefore, it can only capture the components
within the linear span of the data (51). Truncating the smaller
PCs provides denoised signal as a preprocessing step for indepen-
dent component analysis (ICA) that can infer the independent
sources in the signal space (52). Its most common form, fastICA,
enforces sparsity constraints on the activity of the components, re-
flecting an assumption about the activity (53). In contrast, in SCA,
the sparsity constraint is on the neuronal implementation, i.e., the
potential readout weights corresponding to the mixing matrix in
ICA, reflecting an assumption about the connectivity.

In summary, our study provides a biologically inspired frame-
work to link representational geometries to single neurons. Neuro-
nal representations must be communicated. Information that
cannot be accessed by other neurons does not exist. To understand
complex neural systems such as the PFC where we lack clear priors
about the signal sources, it is paramount to exploit the circuit and
wiring motifs that underlie the observed activity patterns.

MATERIALS AND METHODS
Subjects
Two adult male rhesus monkeys (Macaca mulatta, 12 and 13 years
old) were used for this study. All experimental procedures were in
accordance with the guidelines for animal experimentation ap-
proved by the national authority, the Regierungspräsidium Tübing-
en. A detailed description is provided elsewhere (9, 10). Monkeys
were implanted with two right-hemispheric recording chambers
centered over the principal sulcus of the lateral PFC and the
ventral intraparietal area in the fundus of the intraparietal sulcus.
This study reports on the PFC data.

Task and stimuli
The animals grabbed a bar to initiate a trial and maintained eye fix-
ation (ISCAN, Woburn, MA) within 1.75° of visual angle of a
central white dot. Stimuli were presented on a centrally placed
gray circular background subtending 5.4° of visual angle. Following
a 500-ms presample (pure fixation) period, a 500-ms sample stim-
ulus containing one to four dots was shown. The monkeys had to
memorize the sample numerosity for 2500 ms and compare it to the
number of dots (one to four) presented in a 1000-ms test stimulus.
Test stimuli were marked by a red ring surrounding the background
circle. If the numerosities matched (50% of trials), then the animals
released the bar (correct match trial). If the numerosities were dif-
ferent (50% of trials), then the animals continued to hold the bar
until the matching number was presented in the subsequent
image (correct nonmatch trial). Match and nonmatch trials were
pseudorandomly intermixed. Correct trials were rewarded with a
drop of water. In 80% of trials, a 500-ms interfering numerosity
of equal numerical range was presented between the sample and
test stimulus. The interfering numerosity was independent from
either the sample or test numerosity and therefore not useful for
solving the task. In 20% of trials, a 500-ms gray background circle
without dots was presented instead of an interfering stimulus, i.e.,
trial length remained constant (control condition, blank). Trials
with and without interfering numerosities were pseudorandomly
intermixed. Stimulus presentation was balanced: A given sample
was followed by all interfering numerosities with equal frequency
and vice versa. Throughout the monkeys’ training on the distractor
task, there was never a condition where a stimulus appearing at the
time of the distractor was task relevant.
Low-level, non-numerical visual features could not systemati-

cally influence task performance (10, 28): In half of the trials, dot
diameters were selected at random. In the other half, dot density
and total occupied area were equated across stimuli. CORTEX soft-
ware (National Institute of Mental Health, Bethesda, MD) was used
for experimental control and behavioral data acquisition. New
stimuli were generated before each recording session to ensure
that the animals did not memorize stimulus sequences.
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Electrophysiology
Up to eight 1-megohm glass-insulated tungsten electrodes (Alpha
Omega, Israel) per chamber and session were acutely inserted
through an intact dura with 1-mm spacing. Single units were re-
corded at random; no attempt was made to preselect for particular
response properties (10). Signal amplification, filtering, and digital-
ization were accomplished with the MAP system (Plexon, Dallas,
TX). Waveform separation was performed offline (Plexon
Offline Sorter).

Data analysis tools
Data analysis was performed with Python using custom scripts
based on packages NumPy, SciPy, scikit-learn, TensorFlow2,
PyTorch, Matplotlib, and Plotly.

Preprocessing
Single units were included in the analysis if they were recorded in at
least four correct trials of each task condition (meaning each unique
sample and distractor numerosity combination). This resulted in
467 neurons across 78 sessions recorded in the PFC. Trials
without distractors were not included in the analyses unless speci-
fied otherwise.
Unless specified otherwise, the firing rates were binned in a

Gaussian window with sigma of 50 ms and step of 100 ms,
aligned to the start of the fixation period. The data were then orga-
nized into a condition–by–time point–by–neuron tensor. Each
tensor entry was normalized by the SD across trials (within each
condition). This operation was done to better reflect the informa-
tion represented in the neuronal population, which can be related to
between-class covariance over within-class covariance. In our data,
the neurons were not simultaneously recorded. We therefore
reduced the within-class covariance to each neuron’s within-class
variance.

Demixing
Given the independence of the task variables sample numerosity (s),
distractor numerosity (d), and trial time (t), the neuronal activity
can be directly factorized into parts for each variable and their in-
teraction

x ¼ xþ xt þ xs þ xd þ xst þ xdt þ xsd þ xsdt ð1Þ

where x is the mean activity of a neuron (effectively mean-centering
the demixed parts).
Because the stimulus response is also modulated by time, each

part was grouped together with its interaction with time (22)

xtime ¼ xt ð2Þ

with the dimensionality of 45 (time points; 4.5-s trial length; 100-ms
bin width)

xsample ¼ xs þ xst ð3Þ

with the dimensionality of 4 × 45 = 180 (sample numerosities × time
points)

xdistractor ¼ xd þ xdt ð4Þ

with the dimensionality of 4 × 45 = 180 (distractor numerosities ×

time points)

xsd interaction ¼ xsd þ xsdt ð5Þ

with the dimensionality of 4 × 4 × 45 = 720 (sample numerosities ×
distractor numerosities × time points).

Visualization of representation and implementation space
For a data matrix X where each column vector x is the demixed ac-
tivity of a neuron, the singular value decomposition was taken

X ¼ UΣVT ð6Þ

where U and V are unitary matrices and Σ is a diagonal matrix with
ordered singular values. The first n columns of UΣ are the PCs that
were used to visualize the representational geometry. The first n
columns of VΣ are loadings on the PCs that were used to visualize
the implementation space.
Within this subspace, an arbitrary component can be specified

with UΣP:,1 (P:,1 being a column vector from a unitary matrix P),
with the orientation of this component given by P:,1. The loadings
on this component will be the first row of (UΣP)+X = PTVT, that is
P:;1

TVT . This way, the loadings are visualized with the same orien-
tation P:,1. in implementation space as their corresponding compo-
nent in representation space.

Sparsity measures
The SI of neuronal loadings x is given by

SIðxÞ ¼
kurtosisðxÞ

3
ð7Þ

kurtosisðxÞ ¼ hðx � xÞ4i=hðx � xÞ2i
2

ð8Þ

SI is thus proportional to kurtosis. High SI reflects heavy tails.
Low SI approximates a box-car distribution. A Gaussian distribu-
tion’s SI is 1.
The sparsity parameter β is calculated by fitting generalized

normal distributions to the neuronal loadings. The probability
density function of a generalized normal distribution is defined as

f Xðx; α; βÞ ¼
β

2αΓ 1
β

� � e�
jx� μj
αð Þ

β

x [ R; α . 0; β . 0 ð9Þ

where ΓðzÞ ¼
ð1

0
tz� 1etdt z . 0 ð10Þ

α controls the variance of the distribution. β controls the kurtosis of
the distribution (sparsity). β = 2 yields a Gaussian distribution. The
parameters were fitted using maximum likelihood estimation.

Sparse component analysis
Following the formulation of sparse coding (16, 17, 54), SCA
reduces the dimensionality of the dataset and identifies the
unique components by enforcing a sparse penalty on neuronal
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loadings

Loss ¼ kX �
Xk

i¼1
ui
! vi!

T
k
Frobenius

þ α
Xk

i¼1
kvi!k1

þ β
Xk

i¼1
kvi!k

2
2 ð11Þ

where k ri!k ¼ 1.
The loss function is defined as the sum of the reconstruction loss

and the regularizations. Data X is organized as an n activity instanc-
es (combination of conditions and time points) by p neurons
matrix. X is then approximated by k firing activity vectors u! and
their corresponding neuronal loadings v!. The parameter α controls
the strength of L1 regularization that encourages sparsity of the
loadings. Parameters α and k were determined by a twofold cross-
validated grid search. The L2 regularization coefficient β was set at
0.01 to smooth the loss landscape and make the result stable across
random initializations.

Substitute data for SCA
Substitute data were created for the demixed sample coding part X
of the data (Fig. 2). For the singular value decomposition X =UΣVT,
UΣ specifies the representational geometry (see above). Operations
were performed on V only.
A random unitary matrix R with the size of the number of

neurons was drawn from a Haar distribution. The original matrix
V was replaced with V0 = VR. V0 is also a unitary matrix, meaning
that this manipulation will not change the geometries but will rotate
them to random axes. In other words, it will linearly combine the
loadings including those on the components with very low variance,
which will render the substitute distribution of loadings on the
sample numerosity components close to Gaussian. The substitute
data are then

X0 ¼ UΣV 0T ¼ XR ð12Þ

Synthetic data with continuously active SCs
We constructed continuously active components from the sample
numerosity representing subspace defined by the activity patterns
of three sample numerosity representing SCs (each active in one
task epoch; shown in Fig. 2F) denoted as Usequential, where each
column of Usequential is one SC’s activity pattern. We can then
write arbitrary components in this subspace as UsequentialQ, where
each column ofQ denotes the coefficients of the linear combination
for that component.We designed a transformationmatrixQ = [[−1,
1, 1]T, [−1, 1, 1]T, [− 1, 1, 1]T] that is full rank and has no zero el-
ements to ensure that it spans the same subspace and that each con-
structed component is active in all task epochs (thus continuous).
This transformation matrix was then orthonormalized using the
Gram-Schmidt process and yielded Q0 = [[−0.58, 0.58, 0.58]T,
[0.78, 0.21, 0.57]T, [−0.21, −0.78, 0.57]T]. The constructed contin-
uously active components were then

Ucontinuous ¼ UsequentialQ0 ð13Þ

We then created synthetic neurons using these continuously
active components. The neuronal loading on each continuously
active component was independently sampled from a generalized

normal distribution (see Eq. 9) with parameters matching that of
the original data (sparsity β = 1.1, α = 1; the whole distribution
was then scaled to match the variance of the SCs in the original
data). The synthetic neurons’ loadings are denoted as Vsparse,
where each column vector of Vsparse is the neuronal population’s
loadings on one component (with a length of 467, matching the
number of neurons in the original data). The synthetic data are
then given by

Xsynthetic ¼ UcontinuousVT
sparse ð14Þ

Measures of SC activity
ui
! in SCA specifies the activity of the SC i. The following measures
of the set of ui

! were compared between the original dataset and its
substitutes (n = 1000).
Spread of representation
The SD of ui

! across different numerosity conditions k at each time
point was used to define the relative (normalized) information at
that time point. Specifically, each ui

! was first reshaped into a con-
dition–by–time point matrix Yi. Then, the information in compo-
nent i at time point t is given by

Zi;t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðYi
k;t � hY

i
k;tikÞ

2
ik

q

ð15Þ

The skewness of the information across time points was calculat-
ed for each component and averaged across components as follows

Skewi ¼ hðZi;t � Zi;tÞ
3
it=hðZi;t � Zi;tÞ

2
i
3=2
t ð16Þ

Positively skewed Z indicates a long tail in the distribution of in-
formation across time points, corresponding to a few time points
having high information. Conversely, a smaller or even negative
skewness implies that there are more high-information time
points than low-information time points, making the high informa-
tion more spread out across time points. We define the spread of
representation as the negative skewness

Spread ¼ � hSkewiii ð17Þ

Overlap of active periods
The dot product of the information of every pair of components i
and j was taken and averaged across pairs

Overlap ¼ hZi;tZT
j;ti ð18Þ

Maximum tuning reversal
A given component imay show changes of tuning to sample numer-
osities during the course of a trial. Its tuning at time t is specified by
Yi

:;t . For each component i, the dot product similarity of tunings
between time point pairs was specified in the nondiagonal entries
in Ci = YiTYi, where the diagonal entries are the strength of the
tuning at each time point. Ci was then normalized to the strongest
tuning: Ci0 = Ci/max (Ci). The most negative entry in Ci0 was then
the degree of reversal in this component. Reversali = −min (Ci0). It
would reach the maximum of 1 when tuning at a given time point is
the complete reversal of the strongest tuning. It would be close to 0
when the tuning does not reverse. The maximum tuning reversal is
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then the largest reversal in a set of SCs

Max tuning reversal ¼ max
i
Reversali

¼ max
i
� min

YiTYi

maxðYiTYiÞ

" #( )

ð19Þ

Component similarity
Let Usca be the concatenation of activity u!i and Vsca the concatena-
tion of loadings v!i of the SC i. The data matrix can be expressed as
X ¼ UscaVT

sca þ ϵ. ϵ denotes the noise term. Then, it follows
UþscaðX � ϵÞ ¼ VT

sca. The pseudoinverse Uþsca can be viewed as a
linear transform of the original data. Since all the activities u!
have unit length, larger loadings would be required to express an
arbitrary geometry when the activities are correlated, meaning
lower efficiency. The component similarity is measured by the
product of the singular values of Usca. Formally, if the singular
value decomposition gives Usca = UΣVT, then

Similarity ¼
Y

i
Σi;i ð20Þ

The similarity can also be viewed as the determinant of the trans-
formation matrix from arbitrary orthogonal bases to the bases
of Usca.

Numerosity information in different components
The SD Zi,t for all time points t specifies the evolution of normalized
information within this component, but because u!i in component i
has unit length, this measure does not allow for direct comparisons
between components (see above). To allow for such comparisons
(fig. S2), the norm of vi! is therefore applied to Zi,t as a scaling factor

Information ¼ kvi!kZi;t ð21Þ

LDA decoding
Neurons recorded in different sessions were stitched together. To
account for the different number of trials recorded per neuron, a
criterion was set to ensure that there were at least 1.5 times more
trials than neurons. This resulted in 228 neurons with at least 385
trials each. Removing incorrect trials and selecting the minimum
number of trials recorded per condition and neuron left 118 trials
per neuron. Trials of the same condition were then randomly select-
ed for each repetition of the analysis.
Multiclass LDA (scikit-learn package) was used for decoding

because of its advantageous property of accounting for data covari-
ance. LDA assumes the same covariance in every class. It finds the
projection that preserves the Mahalanobis distance between classes
and predicts the label of a new data point by its Mahalanobis dis-
tance to the class centroid. Shrinkage of the measured covariance
matrix was performed by averaging with a diagonal matrix. The
strength of shrinkage was determined following the Ledoit-Wolf
lemma (55). Decoding accuracy, i.e., the ratio of correctly predicted
trials, was averaged across seven repetitions of sevenfold cross-
validation.

Spike train statistics
Firing rates were binned in a Gaussian window with sigma of 12.5
ms and step of 25 ms.

Correlation, autocorrelation, and intrinsic time scales were de-
termined as described elsewhere (29). The firing rate of each
neuron n at time point t of trial i is expressed as xn,i,t. The
Pearson correlation between time points t1 and t2 is then

rnðt1; t2Þ ¼
hðxn;i;t1 � hxn;i;t1iiÞðxn;i;t2 � hxn;i;t2iiÞii

hðxn;i;t1 � hxn;i;t1iiÞ
2
i
1=2
i hðxn;i;t2 � hxn;i;t2iiÞi

1=2
i

ð22Þ

Autocorrelation is defined as

ACnðΔtÞ ¼ hrnðt0; t0þ ΔtÞit0 ð23Þ

To account for the refractoriness and adaptation at small time
lags, fitting started at the time lag where the autocorrelation func-
tion had dropped most strongly. Neurons with the strongest drop
after 400 ms were discarded (six neurons). The autocorrelation
was then fitted with an exponential decay

ACðΔtÞ ¼ A½expð� Δt=τÞ þ B� ð24Þ

Parameters A and B were constrained in [0,1], and τ was con-
strained from 10 to 2000 ms. The autocorrelation function of
eight neurons could not be fitted. The neurons with τ fitted below
20 ms (20 neurons) or above 1600 ms (25 neurons) were excluded
because of the biologically unrealistic fit. This left 408 neurons. Very
few neurons were excluded in the dominant subpopulations (two
neurons, two neurons, and one neuron for the sensory, memory,
and recovery subpopulation, respectively).
The ISIs were determined for the entire session. The CV mea-

sures the global variation of a neuron’s ISI and is defined as

CV ¼ s:d:ðISIÞ=hISIi ð25Þ

In contrast to CV, LV measures the local ISI change (56). It is
defined as

LV ¼
3

n � 1

Xn� 1

i¼1
ðISIi � ISIiþ1Þ2=ðISIi þ ISIiþ1Þ2 ð26Þ

CV and LV are both expected to be 1 for spiking activity follow-
ing a Poisson process. CV and LV would be 0 for perfectly regular
firing and larger than 1 for more irregular firing than by a
Poisson process.

Kullback-Leibler divergence
KL divergence measures the difference between two distributions.
For the analyses of intrinsic time scales and periodicity, KL diver-
gence was calculated between the distribution of statistic x for the
entire population P and that of subsamplesQ (either dominant sub-
populations or bootstrap subsamples). It is given by

DKLðPkQÞ ¼ �
X

xPðxÞ � logQðxÞ=PðxÞ ð27Þ

To create the null distribution of DKL, 27 neurons (comparable
to the number of neurons in the dominant subpopulations after ex-
clusion of neurons in which no autocorrelation function could be
fitted) were randomly sampled from the PFC population
1000 times.
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Temporal dynamics
Periodicity
The Fourier transform of the demixed temporal part of the firing
rate of each neuron is given by

PSDðf Þ ¼ DFT½xtimeðtÞ� ð28Þ

Then, the periodicity was defined as the ratio between the power
of the harmonics of 1/1.5 Hz (reflecting the onset of visual input at
regular spacing of 1.5 s) and the power of all frequencies

Periodicity ¼
X

i[ZþPSD i
2
3

� �

=
X

fPSDðf Þ ð29Þ

Tangling
Tangling reflects the smoothness and stability of the flow field
around the vicinity of state xt on a trajectory (30). It is given by

QðtÞ ¼ max
t0

k _xt � _xt0 k2

kxt � xt0 k2 þ ϵ
ð30Þ

It specifies the maximum difference between the derivative at
state xt and the derivative at other states xt0, normalized by their Eu-
clidean distance. A small constant ϵ was added to avoid numerical
error when the two states were too close.

Recurrent neural network
An RNN model was implemented using the PyTorch neural
network module. The model has the formulation

rðs; d; t þ 1Þ ¼ ϕ½Wrðs; d; tÞ þ Inðs; d; tÞ þ b� ð31Þ

r is the firing rate of units in the condition of sample numerosity
s and distractor numerosity d at time point t. ϕ is the nonlinear ac-
tivation function, chosen to be a rectified linear unit to respect the
biological characteristics of non-negative firing rates with high
upper limits. W is the within-population connectivity matrix. I is
the input matrix with the dimensions of 467 (total number of
units) by 4 (number of numerosities). A column I:,a is the input
to the units when numerosity a is being presented. n is an indicator
vector with the entry na corresponding to the presented numerosity
being 1 and all other entries being 0. b is the intercept.W, I, and b
are the parameters to be trained. Formally, n as a function of trial
type specified by s and d and time point t is defined by

nðs; d; tÞ ¼ mðsÞ �mask½0:5;1ÞðtÞ þmðdÞ �mask½2;2:5ÞðtÞ ð32Þ

where mðxÞ ¼ ½1f1gðxÞ; 1f2gðxÞ; 1f3gðxÞ; 1f4gðxÞ�
T

ð33Þ

maskAðtÞ ¼ 1Aðt � 0:1Þ ð34Þ

1AðxÞ :¼
1; x [ A
0; x � A

�

ð35Þ

mmaps a numerosity to the corresponding one-hot vector. maskA-
(t) indicates the time (0.1 s steps) when the corresponding stimulus
is presented. 1A(x) is an ancillary indicator function to define m
and mask.
The model was trained to produce the whole sequence of firing

rates r(s, d, t) to match the target data xs,d,t, given the initial firing

rate in the fixation period r(s, d, t0) and the input n(s, d, t). The loss
function is defined as

LossðW; I; bÞ ¼
X

s;d;t
½rðs; d; tÞ � xs;d;t�2 þ λkWk1 þ λkIk1 ð36Þ

rðs; d; t0Þ ¼ xs;d;t0 ð37Þ

The coefficient λ controls the strength of regularization and was
determined by a grid search with cross validation. The model
weights were initialized by sampling from the uniform distribution
½�

ffiffiffiffi
N
p

;
ffiffiffiffi
N
p
�, where N is the number of neurons. Because the initial

model weights influence the learning result (57), we chose the
densest distribution to not bias the result toward sparse
implementations.
The prediction of the later time points relies on the quality of the

prediction of the early time points. If the training was done only by
giving the first time point, then convergence would be difficult to
achieve and learning would be heavily biased toward reproducing
early time points in the data. To overcome this possible instability,
the model was trained in a recursive fashion by first using every time
point as the initial firing rate, training the model to predict the fol-
lowing time points, and gradually increasing the number of time
points the model needs to predict. Hence, at each iteration i, the
temporal sequence xs,d,t was reorganized into T − i chunks of
length i + 1, {xs,d,t0, …, xs,d,t0+i} where t0 ∈ {1, …, T − i}, with the
first firing rate in each chunk as initial firing rate and the rest as
target to be fit by the model.

Variance explained by RNN
The variance explained by the model was determined by the differ-
ence between the model’s predicted trajectory and the trajectory of
the original data normalized to the difference between a reference
trajectory (constant activity set to the first entry of the fixation
period) and the trajectory of the original data

EV ¼ 1 �
X

s;d;t
½rðs; d; tÞ � xs;d;t�2=

X

s;d;t
½xs;d;t0 � xs;d;t�2 ð38Þ

The normalized EV (Fig. 7C, right axis) was defined as the differ-
ence between a substitute’s EV and the original data’s EV, divided
by the percentage of the manipulated variance (numerosity coding
signal, 27.4%; compare to Fig. 2B). EV for the numerosity signal
(Fig. 7D) was calculated by replacing both r(s, d, t) and xs,d,t with
their demixed numerosity representing parts.

Substitute data for RNN
To not distort the strong connection between sample and distractor
numerosity coding (e.g., Fig. 3B and figs. S2 and fig. S5B), the load-
ings of these two parts of the data and their interaction were shuffled
together to create three types of substitute datasets. The RNNmodel
was then trained on the substitutes.
Gaussian distribution of loadings
The Gaussian substitutes were created as described for SCA, except
for that singular value decomposition that was performed onXsample
+ Xdistractor + Xsd-interaction = Xall − Xt = UΣVT.
Sparse distribution with random alignment
For k dimensions of the numerosity coding part of the data (deter-
mined by cross-validation), a k × k unitary matrix R was randomly
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drawn from a Haar distribution and combined with an identity

matrix I to create R0 ¼ R 0
0 I

� �

. Then, V0 = VR0 was substituted

for V. This leaves the sparse structure in the original k dimensional
numerosity representing subspace intact but rotates the sparse
structure in V:,1:k to random orientations.
Sparse distribution with original alignment
The rows of V:,1:k, i.e., the neuronal identities, were permuted by
substituting V0 = (Vpermute,1:k, V:,k+1:p) for V.

Supplementary Materials
This PDF file includes:
Figs. S1 to S5

REFERENCES AND NOTES
1. D. L. Barack, J. W. Krakauer, Two views on the cognitive brain. Nat. Rev. Neurosci. 22,

359–371 (2021).
2. S. Saxena, J. P. Cunningham, Towards the neural population doctrine. Curr. Opin. Neurobiol.

55, 103–111 (2019).
3. F.-K. Chiang, J. D. Wallis, E. L. Rich, Cognitive strategies shift information from single

neurons to populations in prefrontal cortex. Neuron 110, 709–721.e4 (2022).
4. S. Bernardi, M. K. Benna, M. Rigotti, J. Munuera, S. Fusi, C. D. Salzman, The geometry of

abstraction in the hippocampus and prefrontal cortex. Cell 183, 954–967.e21 (2020).
5. G. Okazawa, C. E. Hatch, A. Mancoo, C. K. Machens, R. Kiani, Representational geometry of

perceptual decisions in the monkey parietal cortex. Cell 184, 3748–3761.e18 (2021).
6. N. Kriegeskorte, X.-X. Wei, Neural tuning and representational geometry.Nat. Rev. Neurosci.

22, 703–718 (2021).
7. M. Rigotti, O. Barak, M. R. Warden, X.-J. Wang, N. D. Daw, E. K. Miller, S. Fusi, The importance

of mixed selectivity in complex cognitive tasks. Nature 497, 585–590 (2013).
8. S. E. Cavanagh, J. P. Towers, J. D. Wallis, L. T. Hunt, S. W. Kennerley, Reconciling persistent

and dynamic hypotheses of workingmemory coding in prefrontal cortex. Nat. Commun. 9,
3498 (2018).

9. S. N. Jacob, D. Hähnke, A. Nieder, Structuring of abstract working memory content by
fronto-parietal synchrony in primate cortex. Neuron 99, 588–597.e5 (2018).

10. S. N. Jacob, A. Nieder, Complementary roles for primate frontal and parietal cortex in
guarding working memory from distractor stimuli. Neuron 83, 226–237 (2014).

11. A. Parthasarathy, C. Tang, R. Herikstad, L. F. Cheong, S.-C. Yen, C. Libedinsky, Time-invariant
working memory representations in the presence of code-morphing in the lateral pre-
frontal cortex. Nat. Commun. 10, 4995 (2019).

12. C. Tang, R. Herikstad, A. Parthasarathy, C. Libedinsky, S.-C. Yen, Minimally dependent ac-
tivity subspaces for working memory and motor preparation in the lateral prefrontal
cortex. eLife 9, e58154 (2020).

13. E. Courchesne, P. R. Mouton, M. E. Calhoun, K. Semendeferi, C. Ahrens-Barbeau, M. J. Hallet,
C. C. Barnes, K. Pierce, Neuron number and size in prefrontal cortex of children with autism.
JAMA 306, 2001–2010 (2011).

14. S. Herculano-Houzel, K. Catania, P. R. Manger, J. H. Kaas, Mammalian brains are made of
these: A dataset of the numbers and densities of neuronal and nonneuronal cells in the
brain of glires, primates, scandentia, eulipotyphlans, afrotherians and artiodactyls, and
their relationship with body mass. Brain Behav. Evol. 86, 145–163 (2015).

15. G. Eyal, M. B. Verhoog, G. Testa-Silva, Y. Deitcher, R. Benavides-Piccione, J. DeFelipe,
C. P. J. de Kock, H. D. Mansvelder, I. Segev, Human cortical pyramidal neurons: From spines
to spikes via models. Front. Cell. Neurosci. 12, 181 (2018).

16. P. Georgiev, F. Theis, A. Cichocki, H. Bakardjian, Sparse Component Analysis: A New Tool for
Data Mining (Data Mining in Biomedicine, Springer, 2007), vol. 7, pp. 91–116.

17. B. A. Olshausen, D. J. Field, Emergence of simple-cell receptive field properties by learning
a sparse code for natural images. Nature 381, 607–609 (1996).

18. M. C. Aoi, V. Mante, J. W. Pillow, Prefrontal cortex exhibits multidimensional dynamic en-
coding during decision-making. Nat. Neurosci. 23, 1410–1420 (2020).

19. A. Libby, T. J. Buschman, Rotational dynamics reduce interference between sensory and
memory representations. Nat. Neurosci. 24, 715–726 (2021).

20. V. Mante, D. Sussillo, K. V. Shenoy, W. T. Newsome, Context-dependent computation by
recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).

21. S. Kornblith, M. Norouzi, H. Lee, G. Hinton, "Similarity of neural network representations
revisited." In International conference on machine learning, pp. 3519-3529. PMLR (2019).

22. D. Kobak, W. Brendel, C. Constantinidis, C. E. Feierstein, A. Kepecs, Z. F. Mainen, X.-L. Qi,
R. Romo, N. Uchida, C. K. Machens, Demixed principal component analysis of neural
population data. eLife 5, e10989 (2016).

23. G. F. Elsayed, J. P. Cunningham, Structure in neural population recordings: An expected
byproduct of simpler phenomena? Nat. Neurosci. 20, 1310–1318 (2017).

24. J. D. Murray, A. Bernacchia, N. A. Roy, C. Constantinidis, R. Romo, X.-J. Wang, Stable pop-
ulation coding for working memory coexists with heterogeneous neural dynamics in
prefrontal cortex. Proc. Natl. Acad. Sci. U.S.A. 114, 394–399 (2017).

25. A. Parthasarathy, R. Herikstad, J. H. Bong, F. S. Medina, C. Libedinsky, S.-C. Yen, Mixed se-
lectivity morphs population codes in prefrontal cortex. Nat. Neurosci. 20,
1770–1779 (2017).

26. D. F. Wasmuht, E. Spaak, T. J. Buschman, E. K. Miller, M. G. Stokes, Intrinsic neuronal dy-
namics predict distinct functional roles during working memory. Nat. Commun. 9,
3499 (2018).

27. E. Spaak, K. Watanabe, S. Funahashi, M. G. Stokes, Stable and dynamic coding for working
memory in primate prefrontal cortex. J. Neurosci. 37, 6503–6516 (2017).

28. A. Nieder, D. J. Freedman, E. K. Miller, Representation of the quantity of visual items in the
primate prefrontal cortex. Science 297, 1708–1711 (2002).

29. J. D. Murray, A. Bernacchia, D. J. Freedman, R. Romo, J. D. Wallis, X. Cai, C. Padoa-Schioppa,
T. Pasternak, H. Seo, D. Lee, X.-J. Wang, A hierarchy of intrinsic timescales across primate
cortex. Nat. Neurosci. 17, 1661–1663 (2014).

30. A. A. Russo, S. R. Bittner, S. M. Perkins, J. S. Seely, B. M. London, A. H. Lara, A. Miri,
N. J. Marshall, A. Kohn, T. M. Jessell, L. F. Abbott, J. P. Cunningham,M. M. Churchland, Motor
cortex embeds muscle-like commands in an untangled population response. Neuron 97,
953–966.e8 (2018).

31. S. Ladjal, A. Newson, C.-H. Pham, A PCA-like autoencoder. arXiv:1904.01277 [quant-
ph] (2019).

32. J. A. Harris, S. Mihalas, K. E. Hirokawa, J. D. Whitesell, H. Choi, A. Bernard, P. Bohn,
S. Caldejon, L. Casal, A. Cho, A. Feiner, D. Feng, N. Gaudreault, C. R. Gerfen, N. Graddis,
P. A. Groblewski, A. M. Henry, A. Ho, R. Howard, J. E. Knox, L. Kuan, X. Kuang, J. Lecoq,
P. Lesnar, Y. Li, J. Luviano, S. McConoughey, M. T. Mortrud, M. Naeemi, L. Ng, S. W. Oh,
B. Ouellette, E. Shen, S. A. Sorensen, W. Wakeman, Q. Wang, Y. Wang, A. Williford,
J. W. Phillips, A. R. Jones, C. Koch, H. Zeng, Hierarchical organization of cortical and tha-
lamic connectivity. Nature 575, 195–202 (2019).

33. S. Chung, L. F. Abbott, Neural population geometry: An approach for understanding bi-
ological and artificial neural networks. Curr. Opin. Neurobiol. 70, 137–144 (2021).

34. J. Hirokawa, A. Vaughan, P. Masset, T. Ott, A. Kepecs, Frontal cortex neuron types cate-
gorically encode single decision variables. Nature 576, 446–451 (2019).

35. G. Bondanelli, S. Ostojic, Coding with transient trajectories in recurrent neural networks.
PLOS Comput. Biol. 16, e1007655 (2020).

36. I. M. Johnstone, A. Y. Lu, On consistency and sparsity for principal components analysis in
high dimensions. J. Am. Stat. Assoc. 104, 682–693 (2009).

37. O. Barak, M. Rigotti, S. Fusi, The sparseness of mixed selectivity neurons controls the
generalization-discrimination trade-off. J. Neurosci. 33, 3844–3856 (2013).

38. L. Woloszyn, D. L. Sheinberg, Effects of long-term visual experience on responses of dis-
tinct classes of single units in inferior temporal cortex. Neuron 74, 193–205 (2012).

39. D. J. Freedman, M. Riesenhuber, T. Poggio, E. K. Miller, Experience-dependent sharpening
of visual shape selectivity in inferior temporal cortex. Cereb. Cortex 16, 1631–1644 (2006).

40. D. B. Ehrlich, J. D. Murray, Geometry of neural computation unifies working memory and
planning. Proc. Natl. Acad. Sci. 119, e2115610119 (2022).

41. R. Kim, T. J. Sejnowski, Strong inhibitory signaling underlies stable temporal dynamics and
working memory in spiking neural networks. Nat. Neurosci. 24, 129–139 (2021).

42. A. Dubreuil, A. Valente, M. Beiran, F. Mastrogiuseppe, S. Ostojic, The role of population
structure in computations through neural dynamics. Nat. Neurosci. 25, 783–794 (2022).

43. A. E. Orhan, X. Pitkow, "Improved memory in recurrent neural networks with sequential
non-normal dynamics." in 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020 (2020); https://openreview.net/forum?id=
ryx1wRNFvB.

44. S. Funahashi, C. J. Bruce, P. S. Goldman-Rakic, Mnemonic coding of visual space in the
monkey’s dorsolateral prefrontal cortex. J. Neurophysiol. 61, 331–349 (1989).

45. D. Mendoza-Halliday, S. Torres, J. C. Martinez-Trujillo, Sharp emergence of feature-selective
sustained activity along the dorsal visual pathway. Nat. Neurosci. 17, 1255–1262 (2014).

46. V. Koren, A. R. Andrei, M. Hu, V. Dragoi, K. Obermayer, Pairwise synchrony and correlations
depend on the structure of the population code in visual cortex. Cell Rep. 33,
108367 (2020).

47. M. Román Rosón, Y. Bauer, A. H. Kotkat, P. Berens, T. Euler, L. Busse, Mouse dLGN receives
functional input from a diverse population of retinal ganglion cells with limited conver-
gence. Neuron 102, 462–476.e8 (2019).

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Lin et al., Sci. Adv. 9, eadh8685 (2023) 13 December 2023 17 of 18

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 13, 2023

https://doi.org/10.1101/2020.07.03.185942
https://openreview.net/forum?id=ryx1wRNFvB
https://openreview.net/forum?id=ryx1wRNFvB


48. J. C. Whittington, W. Dorrell, S. Ganguli, T. E. Behrens, Disentangling with biological con-
straints: A theory of functional cell types. arXiv:2210.01768 [quant-ph] (2022).

49. V. Q. Vu, J. Lei, Minimax sparse principal subspace estimation in high dimensions. Ann.
Statist. 41, 2905–2947 (2013).

50. I. Higgins, L. Chang, V. Langston, D. Hassabis, C. Summerfield, D. Tsao, M. Botvinick, Un-
supervised deep learning identifies semantic disentanglement in single inferotemporal
face patch neurons. Nat. Commun. 12, 6456 (2021).

51. H. Zou, T. Hastie, R. Tibshirani, Sparse principal component analysis. J. Comput. Graph. Stat.
15, 265–286 (2006).

52. A. Hyvärinen, E. Oja, Independent component analysis: Algorithms and applications.
Neural Netw. 13, 411–430 (2000).

53. A. Hyvarinen, Fast ICA for Noisy Data using Gaussian Moments (IEEE, 1999), vol. 5, pp. 57–61.
54. H. Lee, A. Battle, R. Raina, A. Y. Ng, "Efficient sparse coding algorithms," in Advances in

Neural Information Processing Systems (2007), pp. 801–808.
55. O. Ledoit, M. Wolf, A well-conditioned estimator for large-dimensional covariance matri-

ces. J. Multivar. Anal. 88, 365–411 (2004).
56. S. Shinomoto, H. Kim, T. Shimokawa, N. Matsuno, S. Funahashi, K. Shima, I. Fujita, H. Tamura,

T. Doi, K. Kawano, N. Inaba, K. Fukushima, S. Kurkin, K. Kurata, M. Taira, K.-I. Tsutsui,
H. Komatsu, T. Ogawa, K. Koida, J. Tanji, K. Toyama, Relating neuronal firing patterns to
functional differentiation of cerebral cortex. PLoS Comput. Biol. 5, e1000433 (2009).

57. T. Flesch, K. Juechems, T. Dumbalska, A. Saxe, C. Summerfield, Orthogonal representations
for robust context-dependent task performance in brains and neural networks. Neuron
110, 1258–1270.e11 (2022).

Acknowledgments: We thank C. Leibold and M. Grosse-Wentrup for helpful suggestions and
comments regarding the implementation framework and data analysis. Funding: This work
was supported by German Research Foundation (DFG) grants JA 1999/1-1, JA 1999/5-1, and JA
1999/6-1 to S.N.J. and grants NI 618/10-1 and NI 618/13-1 to A.N., as well as European Research
Council (ERC H2020) grant GA 758032 to S.N.J.Author contributions: Conceptualization: X.X.L.
and S.N.J. Methodology: X.X.L. Data collection: S.N.J. and A.N. Data analysis: X.X.L. Data
visualization: X.X.L. and S.N.J. Writing (original draft): X.X.L. and S.N.J. Writing (review and
editing): X.X.L., A.N., and S.N.J. Supervision: S.N.J. Competing interests: The authors declare
that they have no competing interest. Data and materials availability: All data needed to
evaluate the conclusions in the paper are present in the paper and/or the Supplementary
Materials (https://doi.org/10.5061/dryad.j0zpc86m9).

Submitted 20 March 2023
Accepted 14 November 2023
Published 13 December 2023
10.1126/sciadv.adh8685

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Lin et al., Sci. Adv. 9, eadh8685 (2023) 13 December 2023 18 of 18

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 13, 2023

https://doi.org/10.5061/dryad.j0zpc86m9


Use of this article is subject to the Terms of service

Science Advances (ISSN 2375-2548) is published by the American Association for the Advancement of Science. 1200 New York Avenue
NW, Washington, DC 20005. The title Science Advances is a registered trademark of AAAS. 

Copyright © 2023 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim
to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).

The neuronal implementation of representational geometry in primate prefrontal
cortex
Xiao-Xiong Lin, Andreas Nieder, and Simon N. Jacob

Sci. Adv. 9 (50), eadh8685.  DOI: 10.1126/sciadv.adh8685

View the article online
https://www.science.org/doi/10.1126/sciadv.adh8685
Permissions
https://www.science.org/help/reprints-and-permissions

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 13, 2023

https://www.science.org/content/page/terms-service

	INTRODUCTION
	RESULTS
	Different neuronal implementations of the same representational geometry
	The neuronal implementation of working memory
	The effect of distraction on sample numerosity representations
	Subpopulations of neurons dominating working memory representations
	Subpopulation-specific spiking properties
	Subpopulation-specific temporal dynamics and representation of context
	Sparse implementations favored in recurrent circuits

	DISCUSSION
	Bridging population activity and neuronal implementation
	Capturing biologically meaningful dimensions in activity space
	Working memory persistence without neuronal persistence
	Alternative implementation structures
	Relation of SCA to other linear dimensionality reduction methods

	MATERIALS AND METHODS
	Subjects
	Task and stimuli
	Electrophysiology
	Data analysis tools
	Preprocessing
	Demixing
	Visualization of representation and implementation space
	Sparsity measures
	Sparse component analysis
	Substitute data for SCA
	Synthetic data with continuously active SCs
	Measures of SC activity
	Spread of representation
	Overlap of active periods
	Maximum tuning reversal
	Component similarity

	Numerosity information in different components
	LDA decoding
	Spike train statistics
	Kullback-Leibler divergence
	Temporal dynamics
	Periodicity
	Tangling

	Recurrent neural network
	Variance explained by RNN
	Substitute data for RNN
	Gaussian distribution of loadings
	Sparse distribution with random alignment
	Sparse distribution with original alignment


	Supplementary Materials
	This PDF file includes:

	REFERENCES AND NOTES
	Acknowledgments

