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Abstract 13 

Modular organization, the division of the cerebral cortex into functionally distinct subregions, is well 14 

established in the primate sensorimotor cortex, but debated in the cognitive association cortex, including 15 

the lateral prefrontal cortex (PFC). So far, single-unit recordings have not confirmed the prefrontal rostro-16 

caudal gradients observed in neuroimaging and neuroanatomical experiments. To bridge these 17 

microscale and macroscale perspectives, we obtained microelectrode recordings with twice the spatial 18 

coverage of conventional studies from the PFC of monkeys engaged in a working memory task. 19 
Neighboring electrodes shared task-related neural dynamics that were stable across recording sessions 20 

and formed spatially continuous, mesoscale clusters with distinct local and long-range fronto-parietal 21 

connectivity. Spiking activity was cluster-specific and related to either the encoding, maintenance or 22 

decoding of working memory content. Our findings support parcellation of the PFC by cognitive control 23 

operations rather than by processed information, indicating that modularity is a fundamental architectural 24 

principle across the primate cortex.  25 
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Introduction 26 

Whether brain function is mirrored in brain structure is one of the oldest and most fundamental questions 27 

in neuroscience (Brodmann, 1909; Kanwisher, 2010; Lashley, 1950). Could the mind's functional 28 

modules, or the "modularity of the mind," be reflected in the brain's anatomical and physiological 29 

architecture, or the "modularity of the brain"? Answering this question would provide deep insights into the 30 

relationship between mental processes and their neuronal underpinnings. 31 

An ordered spatial organization that links brain structure to brain function is characteristic of the sensory 32 
and the motor regions and has been amply described in the visual system (retinotopy) (Hubel & Wiesel, 33 

1977; Steel et al., 2024; Talbot & Marshall, 1941), the auditory system (tonotopy) (Bandyopadhyay et al., 34 

2010; Humphries et al., 2010; Schreiner et al., 2000), the somatosensory system (somatotopy, sensory 35 

homunculus) (Penfield & Boldrey, 1937) and in the motor system (motor homunculus) (Gordon et al., 36 

2023; Penfield & Boldrey, 1937). These topographical maps are the result of spatially ordered afferent 37 

connections from the sensors and efferent projections to the effectors. Thus, the sensory and motor 38 

cortices are organized as spatial replica of the continuous physical space they have evolved to internalize 39 

(Kaas, 1997). 40 

Cognitive theories also propose an innate modular structure for the mind (Fodor, 1983). In this 41 

architecture, distinct subdivisions, each responsible for a different mental function, operate largely 42 

independently of each other and process specific types of information. Examples of such derived 43 

functional modules are found in the ventral visual pathway for perceiving faces (fusiform face area, 44 

(Kanwisher et al., 1997)), places (parahippocampal place area, (Epstein & Kanwisher, 1998)) and written 45 

words (visual word form area, (Mccandliss et al., 2003)), in the posterior parietal cortex for processing 46 

number (Harvey et al., 2013) and in the frontotemporal cortex for understanding language (Fedorenko et 47 
al., 2011). 48 

However, whether these organizational principles apply to the lateral prefrontal cortex (PFC) and other 49 

associative cortical areas that border the domain-specific modules (Fedorenko et al., 2013) and are 50 

crucial for domain-general, higher-order cognitive functions remains controversial. The neuronal 51 

representations of task-related variables in associative cortical areas are typically high-dimensional, 52 

extending beyond the two- or three-dimensional geometry of physical space (Tye et al., 2024). In contrast 53 

to sensory or motor cortical neurons that are tuned to specific stimulus or movement features (pure 54 

selectivity), PFC neurons are recurrently connected into spatially overlapping (Xie et al., 2022), flexibly 55 
forming and disbanding ensembles (Hanganu-Opatz et al., 2023) that share similar tuning properties and 56 

respond to multiple cognitive variables (mixed selectivity) (Aoi et al., 2020; Rigotti et al., 2013; Tye et al., 57 

2024). Models of prefrontal computation therefore explicitly or implicitly adopt the hypothesis that PFC 58 

neurons form a homogenous, interconnected network, where the physical location of individual neurons is 59 

not informative about their function and, consequently, there is no innate modularity (Fig. 1a) (Miller et al., 60 

2018; Mongillo et al., 2008; Stokes, 2015). 61 
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Contrary to this microscale view, a large body of evidence indicates that the PFC is modularly structured 62 

on the macroscale, i.e., in the millimeter to centimeter range. Tracing and structural imaging studies have 63 

identified subdivisions in lateral PFC with distinct anatomical connectivity patterns (Jung et al., 2022; 64 

Petrides & Pandya, 1999; Rapan et al., 2023). Functional and lesion studies point to a rostro-caudal 65 
hierarchical organization of the lateral PFC with actions represented in descending order of abstraction, 66 

i.e., from abstract action control (frontal polar cortex) (Mansouri et al., 2017) to concrete motor responses 67 

(dorsal premotor cortex) (Koechlin et al., 2003). Changes in task-engagement and in the capacity for 68 

learning-related plasticity develop along a similar trajectory (Badre & D'Esposito, 2007, 2009; Riley et al., 69 

2018). 70 

So far, no equivalent of this macro-architecture has been described at the single-neuron and local 71 

microcircuit level, likely because conventional microelectrode recordings cover a few millimeters at most 72 

and therefore do not sample from a large enough cortical area (Lundqvist et al., 2023; Wang et al., 2023). 73 
Here, we bridged across the disconnected microscale and macroscale perspectives and analyzed 74 

extracellular measurements from the primate PFC that spanned an area twice that of conventional multi-75 

electrode arrays. Using working memory as a paradigmatic example of prefrontal higher cognition, we 76 

report evidence for a modular organization of the lateral PFC with parcellation not by the content of the 77 

processed information (Fig. 1b), but instead by the type of cognitive operation performed on this 78 

information (Fig. 1c).  79 
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Results 80 

Working memory related oscillatory burst activity 81 

We obtained extracellular multi-electrode recordings from the (right-hemispheric) frontoparietal 82 

association cortex of two monkeys performing a delayed-match-to-numerosity task, which required the 83 

animals to memorize the number of dots (i.e., numerosity) in a visually presented sample and resist an 84 

interfering distracting numerosity (Jacob & Nieder, 2014; Lin et al., 2023) (Fig. 2a). In each recording 85 

session, four pairs of single-contact microelectrodes were acutely inserted through grids with 1 mm inter-86 
electrode spacing into the lateral PFC and the ventral intraparietal area (VIP) (Fig. 2b). The diameter of 87 

the grids (14 mm) allowed us to sample from cortical areas that extended beyond the areas covered by 88 

typical planar microelectrode arrays (Chapeton et al., 2022; Eisenkolb et al., 2023; Lundqvist et al., 2023) 89 

and still retain single-neuron resolution at each electrode. We analyzed a total of 616 PFC electrodes 90 

(368 and 248 in monkey R and W, respectively) and 614 VIP electrodes (376 and 238 in monkey R and 91 

W, respectively) across 78 sessions (47 and 31 from monkey R and W, respectively). 92 

We first characterized neuronal activity patterns at individual electrodes using the local field potential 93 

(LFP, extracellular voltage signal low-pass filtered at 170 Hz). LFPs capture the volume summation of 94 
oscillatory, synchronized population activity in the local neuronal circuit (Buzsáki et al., 2012). Their lateral 95 

span of several hundred micrometers (Lindén et al., 2011), comparative stability across sessions and 96 

comprehensive account of ongoing network activity make LFPs well-suited to explore the spatial and 97 

functional organization of the recorded area at the mesoscale (Chapeton et al., 2022; Katzner et al., 98 

2009; Wang, 2010). 99 

Raw LFP traces were segmented by trials, spectrally transformed (Moca et al., 2021) and normalized to 100 

the average band power of 9 previous trials and the current trial. At the single-trial level, prefrontal 101 
oscillatory activity was not sustained throughout the trial, but instead composed of sparse, short-lived 102 

peaks in narrow-band LFP power (bursts) (Fig. 2c) (Lundqvist et al., 2016; Miller et al., 2018). We defined 103 

LFP bursts as increases in instantaneous power that exceeded the mean by two standard deviations. We 104 

focused on two frequency bands, gamma (60 – 90 Hz) and beta (15 – 35 Hz), because of their well-105 

documented association with the encoding, maintenance and decoding of working memories in primate 106 

prefrontal and parietal cortex (Jacob et al., 2018; Lundqvist et al., 2018; Lundqvist et al., 2016). 2D 107 

Gaussian kernels were fitted to the local maxima to quantify the bursts’ spectrotemporal properties. Both 108 

gamma and beta bursts lasted for approximately two cycles (mean and standard deviation: gamma: 109 
2.5 ± 1.1 cycles / 33.9 ± 14.3 ms, beta: 1.9 ± 0.8 cycles / 76.4 ± 38.3 ms; Fig. 2d). The distribution of 110 

inter-burst intervals showed modes at zero and one cycle, indicating temporal overlap but spectral 111 

separation of oscillatory bursting activity (Fig. 2e). LFP bursts were tightly and systematically coupled 112 

across frequency bands (Canolty & Knight, 2010), with gamma bursts preferentially occurring at the 113 

troughs of beta oscillations and beta bursts preferring the troughs in the alpha (8 – 16 Hz) and peaks in 114 
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the delta frequency band (2 – 4 Hz) (Fig. 2f). In both regions, this phase-coupling was fixed and 115 

independent of trial time (Fig. S1a) and sample information (numerosity) (Fig. S1b). 116 

Next, we quantified the temporal evolution of bursts by averaging step functions that captured the 117 

temporal duration of each burst across trials. Different trial events were clearly reflected in the burst 118 
probability time courses in both areas (Fig. 2g). The probability of beta bursts in particular increased 119 

sharply following the onset and offset of visual stimuli (sample and distractor numerosities). Notably, while 120 

the latency of sample-triggered beta bursts was the same in PFC and VIP (mean and standard error of 121 

mean: 117 ± 29 ms and 116 ±41 ms, respectively; p = 0.87, paired t-Test), distractor-triggered bursts 122 

occurred significantly later in PFC than in VIP (149 ± 21 ms and 133 ± 28 ms, respectively; p < 0.001, 123 

paired t-Test), in line with distinct involvement of these regions during memory interference (Jacob & 124 

Nieder, 2014). In addition to these event-locked transients, the probability of beta bursts declined during 125 

the presentation of the sample and distractor and increased during the memory delays. Gamma bursts, in 126 
contrast, were more frequent during presentation of the sample and distractor and decreased during the 127 

memory delays. A similar alternation in gamma-beta bursting during working memory was reported 128 

previously (Lundqvist et al., 2023; Lundqvist et al., 2018; Lundqvist et al., 2016). In trials without the 129 

distractor, the event-locked responses were absent, while the remaining time course was remarkably 130 

similar to trials with distractors (Fig. 2h). 131 

Finally, to investigate how bursts in oscillatory activity related to spiking activity, we extracted multi-unit 132 

activity (MUA; high-pass filtered extracellular voltage signal), at each electrode (271 and 158 PFC multi-133 

units from monkey R and W, respectively; 209 and 112 VIP multi-units from monkey R and W, 134 
respectively). Gamma, but not beta, bursts were accompanied by significantly elevated spiking rates in 135 

both regions (p < 0.001, paired t-Test; Fig. 2i). Prefrontal spiking occurring inside gamma and beta bursts 136 

was more strongly phase-coupled, i.e., synchronized, to local oscillatory activity across all frequencies 137 

than spiking occurring outside of bursts (Fig. 2j). For these analyses, we chose the measure of pairwise 138 

phase consistency (PPC) (Vinck et al., 2010) because it is free of biases caused by unbalanced numbers 139 

of spikes inside and outside of bursts. As expected, spike-field locking was distance-dependent, i.e., it 140 

decayed with increasing distance between electrode pairs (Fig. 2j). Remarkably, the difference in 141 
synchrony between spiking inside and outside of bursts was preserved across regions (locking of PFC 142 

spikes inside/outside of bursts to VIP oscillations; Fig. 2k), ruling out passive volume-spreading of 143 

oscillatory activity across electrodes and “bleeding” of spiking signals into lower frequency bands as 144 

explanatory factors. Multi-unit spiking and LFP burst activity both tracked sample numerosity. However, 145 

whereas spiking activity showed peaked tuning functions with tuning preferentially to numerosities 1 and 146 

4 (border effect) in the sense of labeled line coding (Jacob & Nieder, 2014; Jacob et al., 2016; Nieder et 147 

al., 2002), burst probability increased with number in the majority of prefrontal and parietal electrodes 148 

(Fig. 2l). 149 
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Together, these findings suggest that bursts of oscillatory activity in frontoparietal cortex represent 150 

transient, probabilistic and task-modulated “on states” with elevated and synchronized spiking in local and 151 

long-range neuronal circuits. 152 

 153 

Spatiotemporal patterns of prefrontal oscillatory activity 154 

Next, we asked whether LFP burst patterns varied systematically across the prefrontal recording field. 155 

Across recording sessions, the spatial layout of recording sites changed repeatedly, allowing us to 156 

reconstruct a flattened, subject-specific map of the experimentally sampled PFC with significantly broader 157 

spatial coverage (monkey R: 6×10 mm2, Fig. 3a, b; monkey W: 9×10 mm2, Fig. S3a, b) than can be 158 

achieved using smaller planar multielectrode arrays implanted in human or non-human primate cortex 159 

(Chapeton et al., 2022; Eisenkolb et al., 2023; Lundqvist et al., 2023). All subsequent analyses were 160 

performed for each monkey individually to account for interindividual differences in cortical anatomy and 161 
electrode positioning. In each analysis step, we report results from monkey R first, followed by monkey W. 162 

Burst patterns were calculated for each recording site separately by pooling all recordings performed at a 163 

given site and averaging burst probabilities across conditions (n = 4 sample and n = 4 distractor 164 

numerosities) and sessions. Burst patterns in monkey R were highly specific for individual recording sites 165 

(n = 31) with clear differences between electrodes in bursting activity within and across bands (Fig. 3c). 166 

Importantly, however, burst patterns of adjacent electrodes were very similar (Fig. 3d). Sample 167 

numerosity presentation triggered a peak of gamma bursting in the ventral PFC, whereas beta bursts 168 

mainly appeared in more dorsal electrodes. Both clusters were already apparent in the fixation epoch 169 
(pre-sample), suggesting pre-existing task-independent determinants (pre-structure). In the first memory 170 

delay, gamma bursting activity moved to a posterior cluster. During distractor numerosity presentation, 171 

gamma and beta bursting reappeared again in the same clusters as during the sample. Beta bursts were 172 

generally sparse during the memory delays, with a notable exception in the most posterior electrodes in 173 

the second memory preceding the test (Fig. 3d). 174 

To quantify burst pattern similarity between electrodes, we calculated covariance matrices of gamma and 175 

beta burst probability across all recording sites and performed hierarchical agglomerative clustering on 176 

the covariance summed across the two frequency bands (Fig. 3e). Maximally separated 𝑛 clusters were 177 

then drawn from the resulting dendrogram. The optimal number of clusters was determined using split-178 

half reliability (Fig. S2): covariance matrices were calculated using 100 random split-halves (trial 179 
subsampling at each PFC recording site) and hierarchically clustered. Clustering reliability was defined as 180 

the percentage of recording sites consistently assigned to the same cluster and calculated as a function 181 

of the number of selected clusters (Fig. S2a). To determine statistical significance, we generated a null 182 

distribution for the clustering reliability by shuffling across locations 10 times for each split-half, leading to 183 

1000 samples. We then compared the observed clustering reliability to the 95 % confidence interval (CI) 184 
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of this null distribution. Clustering by beta bursts was more consistent than clustering by gamma bursts. 185 

The most reliable clustering was obtained with both frequency bands combined (Fig. S2b). Reliability 186 

dropped markedly when choosing more than three clusters, which we therefore determined to be the 187 

optimal number. Parcellation of the prefrontal recording field in monkey R in this way revealed a ventral 188 
cluster (#1, 98 electrodes across 9 sites), corresponding to the sites with strong gamma bursting during 189 

sample and distractor presentation; a dorsal cluster (#2, 199 electrodes across 18 sites), corresponding 190 

to the sites with strong beta bursting during sample and distractor presentation; and a posterior cluster 191 

(#3, 71 electrodes across 4 sites), corresponding to the sites with prominent gamma and beta bursting 192 

during the memory delays (Fig. 3f). Although no spatial information was used for clustering, the resulting 193 

clusters were remarkably continuous with no isolated, interspersed electrodes, supporting a close link 194 

between oscillatory neuronal activity (bursts) and prefrontal cortical network structure. 195 

The prefrontal recording sites in monkey W were more posterior (Fig. S3a, b), but also showed 196 
frequency-band, trial-epoch and electrode-specific LFP bursting patterns (Fig. S3c) that allowed 197 

clustering (Fig. S3d, e). In contrast to monkey R, however, clustering reliability decreased smoothly 198 

(Fig. S3f, g), pointing to a more gradient-like, rather than sharply demarcated, modular spatial 199 

organization in the recorded area. 200 

 201 

Local and long-range connectivity of prefrontal clusters 202 

We now investigated whether the cluster-specific LFP activity would also be mirrored in cluster-specific 203 

local and long-range connectivity (Chapeton et al., 2022) (Fig. 4). First, we computed bivariate LFP-LFP 204 
Granger Causality (GC) between simultaneously recorded PFC electrode pairs (Granger, 1969). To 205 

control for effects of differing physical distance and spatial decay of oscillatory signals between electrodes 206 

(Buzsáki et al., 2012; Wang, 2010), we only included electrode pairs separated by 3 or 4 mm. This 207 

allowed us to cover almost all within- and between-cluster combinations in monkey R (3-3, 2-2, 2-3, 1-2). 208 

No electrode pair within cluster 1 reached this criterion. Clusters 1 and 3 were not recorded 209 

simultaneously. We found that the strength of GC connectivity varied as a function of electrode-pairing 210 

(Fig. 4a, b, c). Across all investigated frequencies, connectivity within cluster 3 was highest (n = 132 211 
pairs), followed by connectivity within cluster 2 (n = 420) and between cluster 2 and 1 (n = 112). 212 

Connectivity between clusters 2 and 3 (n = 109) was low, however, suggesting a distinctive role for 213 

cluster 3 in the prefrontal working memory circuit matching its high within-cluster connectivity. 214 

Second, we performed sliding-window analyses of spike-field locking within and between prefrontal 215 

clusters using MUA-LFP pairwise phase consistency (PPC). PPC quantifies the alignment of spikes in a 216 

‘‘sender’’ electrode to specific phases of ongoing LFP oscillations in a ‘‘receiver’’ electrode, which is 217 

indicative of directed synaptic influences (Jacob et al., 2018; Liebe et al., 2012; Pesaran et al., 2008; 218 

Salazar et al., 2012; Siegel et al., 2009). As expected, within-cluster PPC was higher than between-219 
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cluster PPC (Fig. 4d, e, f). PPC within clusters 2 and 3 showed different temporal dynamics and 220 

frequency-dependencies (cluster 2: n = 508 electrode pairs; cluster 3: n = 184): spike-field locking in 221 

cluster 2 was strongest in the memory delays and in the delta band (2 – 4 Hz), whereas spike-field 222 

locking in cluster 3 was most prominent in the theta band (4 – 8 Hz) and more persistent, peaking in 223 
particular in the second memory delay preceding the test (Fig. 4d). PPC between clusters 2 and 1 224 

dominated in the delta band and in the memory delays (2→1: n = 330; 1→2: n = 294; Fig. 4e). In good 225 

agreement with our LFP-LFP connectivity results, spike-field locking was weak between clusters 2 and 3 226 

(2→3: n = 222; 3→2: n = 264; Fig. 4f). 227 

Third, we extended the analyses to investigate long-range frontoparietal connectivity (Fig. 4g – l). Block-228 

wise conditional LFP-LFP Granger Causality was calculated for simultaneously recorded PFC-VIP 229 

electrode pairs. This method isolates the direct drive of one PFC cluster onto VIP, free from intermediate 230 

effects of other clusters (Chen et al., 2006). In line with previous findings (Jacob et al., 2018), PFC-to-VIP 231 
connectivity in monkey R was dominated by lower frequencies (delta and theta band), while VIP-to-PFC 232 

connectivity was also strong in the beta frequency band (16 – 32 Hz; Fig. 4g, h). Remarkably, while the 233 

strength of parieto-frontal beta band communication was similar for all prefrontal clusters (n = 94 pairs), 234 

cross-regional communication in the delta and theta band was cluster-specific and strongest for PFC 235 

cluster 3 (n = 19), followed by cluster 2 (n = 47) and cluster 1 (n = 28; Fig. 4i). These results were 236 

confirmed by an analysis of spike-field locking (PPC), which showed bidirectional, graded and cluster-237 

specific connectivity between prefrontal and parietal cortex (Fig. 4j, k, l). Connectivity with VIP was 238 

strongest for PFC cluster 3 (3→VIP: n = 472; VIP→3: n = 354), followed by cluster 2 (2→VIP: n = 1152; 239 
VIP→2: n = 1006) and cluster 1 (1→VIP: n = 544; VIP→1: n = 506). The spectrotemporal patterns for 240 

each pairing were very reminiscent of the respective clusters’ local connectivity within PFC. Cluster 3, for 241 

example, was characterized by prominent, persistent communication with VIP in the theta-band that 242 

peaked in the second memory delay preceding the test (Fig. 4l). 243 

As in monkey R, the clusters in monkey W clearly segregated by local and long-range connectivity, which 244 

was strongest in the beta frequency band and from parietal to prefrontal cortex in this animal (Fig. S4). 245 

 246 

Functional role of prefrontal clusters in working memory processing 247 

So far, our findings convergently suggested that the primate prefrontal cortical sheet is parcellated into 248 

mesoscale modules with distinct local prefrontal connectivity and communication to distant areas in the 249 

parietal cortex. We therefore hypothesized that the identified clusters have specialized roles in the 250 

encoding, maintenance and decoding of working memory, a central cognitive function of the frontoparietal 251 

association network. 252 

In monkey R, MUA differed strongly between the three clusters (Fig. 5a). Activity in cluster 1 (n = 66 253 

multi-units) and cluster 2 (n = 144) increased sharply in response to sensory stimulation (i.e., visual 254 
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presentation of the sample and distractor numerosities). Firing decayed quickly to baseline in cluster 1, 255 

before ramping up again prior to presentation of the next stimulus. In contrast, activity in cluster 2 256 

remained elevated throughout the memory delays. Units in cluster 3 (n = 59) showed stable and 257 

persistent firing across the entire trial with no appreciable deflections after sensory inputs. Matching these 258 
distinct patterns in spiking activity, working memory content was processed differently in the three clusters 259 

(information about sample and distractor numerosities measured by sliding-window analysis of percent 260 

explained variance ω2; Fig. 5b, c). Cluster 1 and cluster 2 represented the sample and the distractor with 261 

the same strength and dynamics, without reflecting their different behavioral relevance. Information was 262 

highest during numerosity encoding (sensory epochs), and peaked again in cluster 1, but not cluster 2, 263 

during numerosity decoding (late memory epochs). In contrast, numerosity information in cluster 3 was 264 

low following stimulus presentation, but increased markedly for the sample, but not for the distractor, in 265 

the second memory delay, in the sense of recovery of working memory after interference (Jacob & 266 
Nieder, 2014). 267 

Next, we examined the LFP burst patterns (Fig. 5d). Gamma and beta bursting followed alternating, 268 

antagonistic time courses in all three clusters (Lundqvist et al., 2023; Lundqvist et al., 2018; Lundqvist et 269 

al., 2016). Gamma bursting patterns matched the clusters’ spiking activity almost perfectly (compare 270 

Fig. 5d to Fig. 5a; see also Fig. 2i). The probability of gamma bursting scaled with sample and distractor 271 

numerosity. Remarkably, bursting in the sensory and memory epochs was modulated in opposing 272 

directions (Fig. 5e, f). Gamma bursts increased with numerosity during encoding (i.e., visual presentation 273 

of sample and distractor; see also Fig. 2l) but decreased with numerosity during memory maintenance 274 
and decoding. This finding provides support for the notion that oscillatory bursts do not constitute 275 

information coding entities per se, but instead reflect “on states” of neuronal populations in the local 276 

microcircuit that process sensory and memory information with distinct coding schemes. 277 

Beta bursting was triggered in cluster 1 and cluster 2 by the onset and offset of visual stimuli (Fig. 5d). 278 

This sensory pattern was almost absent in cluster 3. Here, beta bursting increased strongly during 279 

memory recovery after interference. Unlike gamma, beta bursting scaled positively with numerosity in all 280 

epochs with no reversals (Fig. 5g, h). 281 

Together, these results suggest that our recordings in monkey R covered three functionally distinct 282 

prefrontal subdivisions with roles in working memory encoding and decoding (cluster 1; mainly local, 283 

within-PFC connectivity); memory maintenance (cluster 2; both local and cross-regional connectivity to 284 

VIP); memory recovery after distraction (cluster 3; mainly cross-regional connectivity to VIP). 285 

In monkey W, spiking activity and numerosity information were more sustained and persisted throughout 286 

the memory delays (Fig. S5a, b, c). As in monkey R, gamma bursting matched spiking well and showed 287 

tuning reversals in the course of the trial (Fig. S5d, e, f). The recording sites did not span a “recovery 288 

cluster”. Beta burst patterns differentiated clearly between individual clusters, two of which also displayed 289 
a reversal in sample numerosity tuning during memory maintenance (Fig. S5d, g, h). 290 
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 291 

Behavioral relevance of oscillatory burst activity for working memory 292 

Finally, we asked whether the cluster-specific microcircuit “on states” were systematically linked to the 293 

animals’ working memory performance. To compare trials with high and low bursting, we calculated the 294 
percentage of trial time covered by oscillatory bursting activity (burst occupancy; normalized by the 295 

standard deviation across the session) (Karvat et al., 2021). Burst occupancy fluctuated slowly throughout 296 

the session in cycles of 10 to 20 trials (approximately 2 to 3 minutes) (Fig. 6a). Notably, these fluctuations 297 

affected both PFC and VIP as well as gamma and beta bursts (Fig. 6a) and became stronger as the 298 

recording session progressed (Fig. 6b). In both areas and frequency bands, burst probability in trials with 299 

high burst occupancy was uniformly offset compared to trials with low burst occupancy, lacking 300 

preference for specific trial epochs (Fig. 6c). These findings suggest that the extent of oscillatory bursting 301 

in local networks was influenced by global cognitive factors (e.g., attentional and motivational 302 
engagement). 303 

In monkey R, increased gamma bursting (high gamma burst occupancy) in correct trials was associated 304 

with faster reaction times (negative correlation between gamma occupancy and reaction time; Fig. 6d). 305 

This pattern was present across PFC clusters (with the exception of cluster 2) and in VIP. In contrast, 306 

increased beta bursting (high beta burst occupancy) was found in trials with slower reaction times 307 

(positive correlation; Fig. 6d). Gamma and beta bursting had opposing effects on response accuracy, 308 

with gamma generally facilitating and beta hindering correct performance (Fig. 6e). Across both analyses, 309 

these patterns were strongest in cluster 3 and VIP and more similar to each other than for any other 310 
cluster pair, providing further support for tight connectivity between these two cortical areas. 311 

In monkey W, we observed the same opposing influences of gamma and beta bursting on task 312 

performance (Fig. S6a, b). Overall, PFC was a stronger determinant of trial outcome than VIP. In line with 313 

our clustering analysis (Fig. S3), the transitions between clusters in this animal were more gradual than in 314 

monkey R.  315 
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Discussion 316 

Here, we report spatially continuous, stable clusters of recording sites in the primate lateral PFC that 317 

segregate by oscillatory network activity, functional connectivity, working memory processing stages and 318 

behavioral influence on mnemonic performance. These multiple lines of evidence suggest that the 319 

frontoparietal working memory network is modularly organized and structured not by the represented 320 

information, but instead by the cognitive control operations that execute on this information. 321 

Anatomical studies have identified multiple subdivisions of the non-human primate lateral PFC (area 46) 322 
based on cytoarchitecture (Petrides & Pandya, 1999; Rapan et al., 2023). For example, the anterior 323 

section has bigger pyramidal neurons in layer III and layer IV compared to the posterior section; the 324 

dorsal part has a prominent layer II, while the ventral part has a prominent layer IV. Notably, cortico-325 

cortical connections of the posterior section were shown to be more widely spread across the brain 326 

compared to those of the anterior section. Connections with posterior parietal cortex (e.g. lateral 327 

intraparietal cortex) were especially strong (Petrides & Pandya, 1984; Rapan et al., 2023). This is in good 328 

agreement with our finding of stronger frontoparietal connectivity in the posterior cluster in monkey R 329 

compared to the anterior clusters. Together, these observations argue that the functionally dissociated 330 
clusters we describe are rooted in the anatomical structure of the PFC and in the frontoparietal 331 

connectome, a notion that also aligns well with recent computational theories of structure in neuronal 332 

activity (Ostojic & Fusi, 2024). 333 

We used LFPs to functionally parcellate the lateral PFC (Fig. 3, Fig. S2, Fig. S3). LFPs represent a 334 

particularly suitable extracellular signal component to explore links between network activity and network 335 

anatomy, e.g., local and long-range wiring motifs. Microscale single-unit measurements only pick up a 336 

small fraction of the spiking activity in the vicinity of the recording electrodes, generating a very 337 
incomplete picture of the full network activity. In addition, neuronal representations in PFC are typically 338 

sparse, i.e., only few neurons carry critical information, meaning that single-neuron recordings alone 339 

cannot provide the dense observations necessary to detect higher-order structures (Lin et al., 2023). In 340 

contrast, mesoscale LFPs sum across all electrical signals generated in the local neuronal circuitry 341 

(Buzsáki et al., 2012), thus providing complete network coverage. At the same time, with a spread of not 342 

more than a few hundred micrometers (Lindén et al., 2011), LFPs are sufficiently contained in space to 343 

locate sharp module boundaries. 344 

Supporting the interdependence between anatomical structure and oscillatory neuronal activity, we found 345 
that LFP bursts displayed fixed spectrotemporal properties (Fig. 2) as well as task-epoch and stimulus 346 

invariant synchrony with local spiking activity (Fig. S1). Remarkably, spike-LFP-coupling not only 347 

reflected local prefrontal, but also long-range frontoparietal connectivity (Fig. 2). The observed recording 348 

site-specific spatiotemporal patterns of LFP bursts therefore likely result from the combination of network 349 

anatomy and external driving factors (Miller et al., 2018), such as sensory inputs (to cluster 1 or 2 in 350 
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monkey R, Fig. 5), remote communication (between cluster 3 and VIP, Fig. 4), or global cognitive states 351 

(slow session-wide fluctuations, Fig. 6). 352 

LFP bursts in monkey W also displayed spatial patterns with different frequency-band and trial-epoch 353 

characteristics, but the modular organization appeared less hierarchical than in monkey R, instead 354 
showing smoother transitions between clusters in the sense of spatial gradients (Fig. S3). Remarkably, 355 

however, the clusters in monkey W were also clearly segregated by the strength of connectivity, at both 356 

local and long-range scales (Fig. S4). It is reasonable to assume that the difference in clustering between 357 

the two animals could have resulted from the difference in prefrontal recording locations (compare Fig. 3 358 

and Fig. S3). Additionally, inter-individual differences in local and distant connectivity could play a major 359 

role. 360 

The organizational principle we identified in lateral PFC differs fundamentally from that of domain-specific 361 

cortices, which are internal mappings of either physical space (e.g., sensory and motor homunculus 362 
(Gordon et al., 2023; Humphries et al., 2010; Penfield & Boldrey, 1937)) or of information space (e.g., 363 

numerosity map in parietal cortex (Harvey et al., 2013)). In contrast, the PFC modules in our recording 364 

field did not differentiate between working memory items (information), since sample and distractor 365 

triggered similar burst responses and spiking activity (Fig. 3, Fig. 5, Fig. S5). Our results suggest instead 366 

that the individual modules had specific roles in the control of working memory content, i.e., the encoding, 367 

maintenance and retrieval of information. These distinct operations were clearly reflected in the burst 368 

patterns recorded in monkey R, where the mapping between numerosity and burst probability was not 369 

fixed but reversed at the transition from the sensory to the memory delay epochs (Fig. 5). They also 370 
matched the connectivity patterns well: numerosity encoding and decoding were strongest in the anterior 371 

cluster with the weakest connection to VIP, while the recovery of memorized information after interference 372 

was strongest in the posterior cluster with the strongest frontoparietal communication (Fig. 4, Fig. 5) 373 

(Jacob et al., 2018; Jacob & Nieder, 2014; Rapan et al., 2023). Overall, organization of the prefrontal 374 

cortical sheet by working memory control processes is in good agreement with the role of the domain-375 

general PFC in top-down executive control and adaptive behavior (Hanganu-Opatz et al., 2023). 376 

Spatially organized LFP dynamics in PFC were recently proposed as a neural mechanism to modulate 377 
the gain of individual items stored in working memory (“spatial computing”) (Lundqvist et al., 2023). These 378 

control signals were hypothesized to arise functionally in an anatomically homogeneous prefrontal 379 

neuronal population. Using a significantly broader recording field, we now show that these spatiotemporal 380 

spectral dynamics are in fact rooted in cortical anatomy. A pre-existing modular structure is engaged 381 

according to the operational demands of a given task. The modular architecture does not result from the 382 

cognitive operation per se. Depending on the nature of the task, individual prefrontal modules may appear 383 

separated by consecutive memory items when the primary operational demand is to keep an ordered list 384 

of items (as in serial working memory (Lundqvist et al., 2023)); or, as in the present case, the modules 385 
reflect the same memory item undergoing different processing stages in order to protect it from 386 
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interference. These observations are in fact two examples of the same principle, namely, modular 387 

organization by cognitive operations.  388 
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Figures 400 

 401 

 402 

Fig. 1 | Hypothesized spatial and functional organization of prefrontal working memory 403 

representations. a, No organization. Individual neurons with different selectivities for memorized items are 404 

interspersed in a salt-and-pepper-like manner. There is no apparent spatial clustering or ordered temporal 405 

progression of activity. b, Organization by working memory content. Individual neurons are clustered by 406 

item selectivity. Activity travels systematically through the clusters, engaging each cluster whenever its 407 

associated item is processed. Individual neurons are, therefore, activated in multiple trial epochs (e.g., 408 

memory encoding, maintenance, and decoding). c, Organization by working memory operation. Individual 409 
neurons are clustered by the cognitive operation they are engaged in (e.g., memory encoding, maintenance 410 

or decoding). Activity travels systematically through the clusters, engaging subsets of neurons with different 411 

item selectivities within each cluster whenever its associated processing stage is reached. Individual 412 

neurons are, therefore, activated mainly in a single trial epoch.  413 
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 414 

Fig. 2 | Working memory related oscillatory burst activity. a, Delayed-match-to-numerosity task. Two 415 

monkeys indicated whether a test stimulus contained the same number of dots (numerosity) as the 416 

memorized sample. A task-irrelevant distractor was presented during the memory delay. b, Schematic of 417 
extracellular recordings. In each session, four pairs of microelectrodes were inserted through grids into the 418 

lateral PFC and into the fundus of the intraparietal sulcus (ips; inset) in VIP. ps, principal sulcus; sar, 419 

superior arcuate sulcus; iar, inferior arcuate sulcus; cs, central sulcus; ls, lateral sulcus. c, Top, example 420 

LFP traces, band-pass filtered in the gamma (60 – 90 Hz) and beta (15 – 35 Hz) frequency range. Bottom, 421 

spectrogram of LFP activity (normalized to average band power taking together 9 previous trials and the 422 

current trial) recorded in an example trial in PFC. d, LFP burst duration at full-width-half-maximum (FWHM) 423 

of the 2D Gaussian kernels fitted to each individual burst. Data from all trial epochs were pooled across 424 
monkeys and electrodes (n = 1230). The mode is marked. e, Inter-burst interval, defined as the temporal 425 

delay between peaks of two subsequent bursts within each band. The modes are marked. f, Top, phase 426 

coupling of gamma burst peaks to ongoing LFP oscillations in PFC (left) and VIP (right). Phase 0 427 

corresponds to the peak, while phase ±π corresponds to the trough of the LFP oscillation (white lines). 428 

Bottom, same for beta bursts. g, Trial-averaged burst probabilities in the gamma and beta frequency ranges 429 

in PFC (left; n = 616 electrodes) and VIP (right; n = 614 electrodes) in correct trials with a distractor. 430 

h, Same as g for trials without a distractor. i, Left, spike rate (multi-unit activity) inside and outside of gamma 431 
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and beta LFP bursts (left and right respectively) in PFC. Right, same for VIP. Spike rate follows normal 432 

distribution after transformed to the logarithmic scale (Kolmogorov-Smirnov test with p < 0.05). Paired t-433 

Test. ***, p < 0.001. j, Top, within-electrode (d = 0 mm) and inter-electrode (d = 1 – 9 mm) spike-field 434 

locking measured by pairwise phase consistency (PPC) for spikes inside (left) and outside (right) of gamma 435 
LFP bursts in PFC. The within-electrode PPC of outside-burst spikes is duplicated on the left for comparison 436 

(dashed line). Bottom, same for beta LFP bursts. k, Cross-regional PPC, quantified by the alignment of 437 

PFC spikes inside and outside of LFP bursts to simultaneously recorded VIP oscillations for gamma (left) 438 

and beta LFP bursts (right). Data were pooled across all electrode pairs. Wilcoxon signed-rank test. Thin 439 

bar, p < 0.05; thick bar, p < 0.01. l, Top, count of PFC electrodes with significant tuning of multi-unit spiking 440 

activity (left), gamma (middle) or beta LFP burst activity (right) to the sample numerosity in the sample 441 

epoch, split by numerosity eliciting peak MUA activity or burst probability. Bottom, same for VIP.  442 
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 443 
Fig. 3 | Spatial clustering of prefrontal recording sites by burst probability. a, Spatial layout of 444 

recording sites in PFC of monkey R, pooled across all sessions. The electrode penetration sites are 445 

displayed over the reconstructed cortical surface. b, Distinct recording layouts with the number of sessions 446 

the respective layouts were used. c, Burst probability at each recording site (n = 31 total) averaged across 447 

all correct trials in the gamma (left) and beta frequency range (right). d, Spatial distribution of trial-averaged 448 

burst probability at selected time points during the trial. e, Analysis pipeline for spatial clustering of recording 449 

sites by similarity in burst activity. Covariance matrices for gamma and beta burst probabilities were 450 
computed for each trial condition (4 sample numerosities × 4 distractor numerosities) and then summed. 451 

The resulting covariance matrix was submitted to hierarchical agglomerative clustering. f, Spatial layout of 452 

clustered recording sites in PFC of monkey R.  453 
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 454 

Fig. 4 | Prefrontal cluster-specific local and long-range connectivity. a, LFP-LFP Granger Causality 455 

(GC) within and between PFC clusters of monkey R. Analysis was performed using equidistant electrode 456 

pairs of 3 to 4 mm distance. b, LFP-LFP GC within and between PFC clusters of monkey R in the 2 – 8 Hz 457 

frequency range. Wilcoxon rank sum test. ***, p < 0.001. c, Same as b displayed in matrix form. Electrode 458 

pairs of 3 to 4 mm distance were not recorded for all cluster combinations. d, Spike-field locking within PFC 459 
clusters 2 and 3 of monkey R, measured by MUA-LFP pairwise phase consistency (PPC), for electrode 460 

pairs of 3 to 4 mm distance. e, Same as d between clusters 1 and 2. f, Same as f between clusters 2 and 461 

3. g, LFP-LFP fronto-parietal GC between PFC electrode clusters and pooled VIP electrodes of monkey R. 462 

h, LFP-LFP parieto-frontal GC between pooled VIP electrodes and PFC electrode clusters of monkey R. 463 

i, LFP-LFP fronto-parietal GC in the 2 – 8 Hz frequency range (left) and LFP-LFP parieto-frontal GC in the 464 

16 – 32 Hz frequency range (right) of monkey R. Kruskal-Wallis test. ***, p < 0.001; n.s., not significant. 465 

j, Bidirectional MUA-LFP spike-field locking (PPC) between PFC cluster 1 electrodes and pooled VIP 466 

electrodes of monkey R. k, Same as j between PFC cluster 2 electrodes and VIP. l, Same as j between 467 
PFC cluster 3 electrodes and VIP.  468 
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 469 

Fig. 5 | Prefrontal cluster-specific burst activity and neuronal selectivity. a, Neuronal activity (MUA, 470 

normalized to fixation epoch) for the three PFC clusters in monkey R. b, Neuronal selectivity (MUA) for 471 

sample numerosity, measured by ω2 percent explained variance, for the three PFC clusters in monkey R. 472 
c, Same as b for distractor numerosity. d, Trial-averaged burst probabilities (correct trials) in the gamma 473 

and beta frequency ranges for the three PFC clusters in monkey R. e, Detrended burst probabilities in the 474 

gamma frequency range for each sample numerosity and PFC cluster in monkey R. Repeated measures 475 

ANOVA. Thin bar, p < 0.05; thick bar, p < 0.01. f, Same as e for distractor numerosity. g, Same as e for the 476 

beta frequency range. h, Same as g for distractor numerosity.  477 
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 478 

Fig. 6 | Global fluctuations in burst activity and relationship to behavioral performance. a, Trial-wise 479 
burst occupancy (all trials), measured as the percentage of trial time covered by oscillatory bursting activity 480 

(normalized by standard deviation across the session), in one representative session of monkey R. Each 481 

region contains 8 simultaneously recorded electrodes, aligned in rows. b, Temporal evolution of burst 482 

occupancy fluctuation (standard deviation) across session time, averaged across animals, brain regions 483 

and sessions. c, Top, trial-averaged burst probability in the gamma frequency range in trials with high and 484 

low occupancy (median split; solid and dashed lines, respectively) for pooled PFC and VIP electrodes (left 485 

and right, respectively) across animals and sessions. Bottom, same for the beta frequency range. d, Median 486 
trial-wise correlation coefficient (Pearson) between burst occupancy in the gamma and beta frequency 487 

ranges and the reaction time in correct trials of monkey R. Data are displayed for each PFC cluster and for 488 

pooled VIP electrodes. Error bars, s.e.m. across electrodes. Paired t-Test. ***, p < 0.001. e, Difference in 489 

burst occupancy between correct and error trials of monkey R. Error bars, s.e.m. across electrodes. Paired 490 

t-Test. *, p < 0.05; ***, p < 0.001  491 
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 492 

Fig. S1 | Phase coupling of gamma bursts to beta oscillations. a, Top row, distribution of preferred 493 

phases for PFC electrodes (radius: electrode count) with significant phase coupling of gamma burst peaks 494 

to ongoing beta oscillations (at 29 Hz), determined for each trial epoch separately. The mean phase is 495 

marked (red line). Bottom row, same for VIP electrodes. b, Top row, distribution of preferred phases for PFC 496 

electrodes (radius: electrode count) with significant phase coupling of gamma burst peaks to ongoing beta 497 
oscillations (at 29 Hz) during the sample epoch, split by sample numerosity. The mean phase is marked 498 

(red line). Bottom row, same for VIP electrodes.  499 
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 500 

Fig. S2 | Reliability of spatial clustering of prefrontal recording sites in monkey R. a, Top, gamma 501 

burst probability covariance matrices were calculated using 100 random split-halves (trial subsampling at 502 

each PFC recording site) and submitted to hierarchical agglomerative clustering (see Fig. 3e). Clustering 503 
reliability is measured as the percentage of recording sites consistently assigned to the same cluster and 504 

shown as a function of the number of selected clusters. The mean (dashed line) and 95% confidence 505 

interval (CI, shaded area) of the clustering reliability null distribution are shown. Middle, same for beta burst 506 

probability covariance. Bottom, same for combined gamma and beta probability covariance. b, Clustering 507 

reliability by recording site.  508 
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 509 
Fig. S3 | Spatial clustering of prefrontal recording sites by burst probability in monkey W. a, Spatial 510 

layout of recording sites in PFC of monkey W, pooled across all sessions. The electrode penetration sites 511 

are displayed over the reconstructed cortical surface. b, Distinct recording layouts with the number of 512 

sessions the respective layouts were used. c, Spatial distribution of trial-averaged burst probability at 513 

selected time points during the trial. d, Hierarchical agglomerative clustering of the summed covariance 514 

matrices for gamma and beta burst probabilities (see Fig. 3e). e, Spatial layout of clustered recording sites. 515 

f, Top, gamma burst probability covariance matrices were calculated using 100 random split-halves (trial 516 

subsampling at each PFC recording site) and submitted to hierarchical agglomerative clustering. Clustering 517 
reliability is measured as the percentage of recording sites consistently assigned to the same cluster and 518 

shown as a function of the number of selected clusters. The mean (dashed line) and 95% confidence 519 

interval (CI, shaded area) of the clustering reliability null distribution are shown. Middle, same for beta burst 520 

probability covariance. Bottom, same for combined gamma and beta probability covariance. b, Clustering 521 

reliability by recording site.  522 
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 523 

Fig. S4 | Prefrontal cluster-specific local and long-range connectivity in monkey W. a, LFP-LFP 524 

Granger Causality (GC) within and between PFC clusters of monkey W. Analysis was performed using 525 

equidistant electrode pairs of 3 to 4 mm distance. b, LFP-LFP GC within and between PFC clusters in the 526 

2 – 8 Hz frequency range. Wilcoxon rank sum test. ***, p < 0.001. c, Same as b displayed as confusion 527 

matrix. Electrode pairs of 3 to 4 mm distance were not recorded for all cluster combinations. d, Spike-field 528 
locking between PFC clusters 1 and 2, measured by MUA-LFP pairwise phase consistency (PPC), for 529 

electrode pairs of 3 to 4 mm distance. e, Same as d between clusters 2 and 3. f, Same as f between clusters 530 

1 and 3. g, LFP-LFP fronto-parietal GC between PFC electrode clusters and pooled VIP electrodes. h, LFP-531 

LFP parieto-frontal GC between pooled VIP electrodes and PFC electrode clusters. i, LFP-LFP fronto-532 

parietal GC in the 2 – 8 Hz frequency range (left) and LFP-LFP parieto-frontal GC in the 16 – 32 Hz 533 

frequency range (right). Wilcoxon rank sum test. ***, p < 0.001; n.s., not significant. j, Bidirectional MUA-534 

LFP spike-field locking (PPC) between PFC cluster 1 electrodes and pooled VIP electrodes. k, Same as j 535 

between PFC cluster 2 electrodes and VIP. l, Same as j between PFC cluster 3 electrodes and VIP.  536 
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 537 

Fig. S5 | Prefrontal cluster-specific burst activity and neuronal selectivity in monkey W. a, Neuronal 538 

activity (MUA, normalized to fixation epoch) for the three PFC clusters in monkey W. b, Neuronal selectivity 539 

(MUA) for sample numerosity, measured by ω2 percent explained variance, for the three PFC clusters. 540 

c, Same as b for distractor numerosity. d, Trial-averaged burst probabilities (correct trials) in the gamma 541 

and beta frequency ranges for the three PFC clusters. e, Detrended burst probabilities in the gamma 542 

frequency range for each sample numerosity and PFC cluster. Repeated measures ANOVA. Thin bar, 543 
p < 0.05; thick bar, p < 0.01. f, Same as e for distractor numerosity. g, Same as e for the beta frequency 544 

range. h, Same as g for distractor numerosity.  545 
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 546 

Fig. S6 | Behavioral relevance of oscillatory bursting activity in monkey W. a, Median trial-wise 547 

correlation coefficient (Pearson) between burst occupancy in the gamma and beta frequency ranges and 548 

the reaction time in correct trials of monkey W. Data are displayed for each PFC cluster and for pooled VIP 549 

electrodes. Error bars, s.e.m. across electrodes. Paired t-Test. ***, p < 0.001. e, Difference in burst 550 

occupancy between correct and error trials of monkey W. Error bars, s.e.m. across electrodes. Paired t-551 
Test. **, p < 0.01; ***, p < 0.001  552 
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Methods 553 

Subjects 554 

Two adult male rhesus monkeys (Macaca mulatta, 12 and 13 years old) were used for this study and 555 

implanted with two right-hemispheric recording chambers (14 mm diameter) centered over the principal 556 

sulcus of the lateral prefrontal cortex (PFC) and the ventral intraparietal area (VIP) in the fundus of the 557 

IPS (Jacob et al., 2018; Jacob & Nieder, 2014). All experimental procedures were conducted in 558 

accordance with the guidelines for animal experimentation approved by the local authority at the 559 
Regierungspräsidium Tübingen. 560 

 561 

Task and stimuli 562 

The monkeys grabbed a bar to initiate a trial. Eye fixation was enforced within 1.75 ° visual angle to a 563 

central white dot (ISCAN, Woburn, MA). Stimuli were presented on a centrally placed gray circular 564 

background subtending 5.40 ° of visual angle. Following a 500 ms pre-sample (fixation only) period, a 565 

500 ms sample stimulus containing one to four dots was shown. The monkeys had to memorize the 566 

sample numerosity for 2,500 ms and compare it to the number of dots (one to four) presented in a 567 
1,000 ms test stimulus. Test stimuli were marked by a red ring surrounding the circular background. If the 568 

numerosities matched (50 % of trials), the animals released the bar (correct match trial). If the 569 

numerosities were different (50 % of trials), the animals continued to hold the bar until the matching 570 

number was presented in the subsequent image (correct nonmatch trial). Match and nonmatch trials were 571 

pseudorandomly intermixed. Correct trials were rewarded with a drop of water. In 80 % of trials, a 500 ms 572 

distractor numerosity of equal numerical range was presented between the sample and test stimulus. The 573 

distractor numerosity was not systematically related to either the sample or test numerosity and therefore 574 
was not required to solve the task. In 20 % of trials, a 500 ms gray background circle without dots was 575 

presented instead of an interfering stimulus (control condition, blank). Trials with and without distractors 576 

were pseudorandomly intermixed. Stimulus presentation was balanced; a given sample was followed by 577 

all interfering numerosities with equal frequency, and vice versa. 578 

Low-level, non-numerical visual features could not systematically influence task performance (Nieder et 579 

al., 2002): in half of the trials, dot diameters were selected at random. In the other half, dot density and 580 

total occupied area were equated across stimuli. CORTEX software (NIMH, Bethesda, MD) was used for 581 

experimental control and behavioral data acquisition. New stimuli were generated before each recording 582 
session to ensure that the animals did not memorize stimulus sequences. 583 

 584 

 585 
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Electrophysiology 586 

In each recording session, four pairs of 1 MΩ glass-isolated single-contact tungsten microelectrodes were 587 

acutely inserted into the prefrontal and parietal chambers through grids with 1 mm inter-electrode 588 

spacing. The selection of insertion sites (electrode layouts) changed repeatedly. Between 4 to 19 589 
recording sessions were obtained with each layout. In PFC, 4 different electrode layouts were used for 590 

monkey R, and 3 layouts for monkey W (covering up to 6 mm x 10 mm and 9 mm x 10 mm, respectively). 591 

To reach VIP, electrodes were passed along the intraparietal sulcus to a depth of 9 to 13 mm below the 592 

cortical surface. Prior to recording neuronal activity in VIP, proper positioning of the electrodes was 593 

ensured by physiological criteria (response to tactile and moving visual stimulation). Electrodes were 594 

advanced until spiking activity was detected. No attempt was made to target a certain cortical layer. 595 

Signal acquisition, amplification, filtering, and digitalization were performed with the MAP system (Plexon, 596 

Dallas, TX). Extracellular voltages were recorded with unity-gain headstages and hardware bandpass-597 
filtering to separate spiking activity (100 – 8000 Hz, sampling rate 40 kHz) from local field potentials (LFP; 598 

0.7 – 170 Hz, sampling rate 1 kHz). 599 

 600 

Data analysis 601 

Analysis was performed with MATLAB (Mathworks, Natick, MA) using customized scripts, the FieldTrip 602 

toolbox (Oostenveld et al., 2011) and the CircStat toolbox (Berens, 2009). 603 

 604 

LFP burst extraction 605 

Power-line noise was removed with a 4th-order Butterworth notch filter at 50 Hz, along with its first and 606 

second harmonics. Transient bursting events were extracted from the LFP spectrogram of each trial. The 607 

raw LFP signals were trial-segmented and time-frequency transformed with additive adaptive superlets as 608 

implemented by the Superlet method (Moca et al., 2021). Superlet uses the geometrical mean of spectral 609 

power estimated with a set of Morlet wavelets with increasingly constrained bandwidth, which enables 610 

super-resolution in both the time and frequency domain. The base wavelet had a temporal spread of 611 

3 cycles. The order (number of wavelets) was linearly defined based on the frequencies of interest, 612 
ranging from 3 to 30. The frequency range of interest was set at 2 to 128 Hz with a linear stepping of 613 

1 Hz. Trials were padded with 1000 ms at the beginning and at the end. Spectrograms were estimated 614 

with a temporal resolution of 1 ms. 615 

To remove slow-trend linear noise (e.g., residual power line noise) and pink (1/f) background noise, the 616 

power spectrogram of each trial was normalized to the average spectral power of 9 previous trials and the 617 

current trial. LFP bursts were identified as intervals when the instantaneous spectral power exceeded 2 618 

standard deviations (SD) above the mean. The Watershed algorithm was used to separate neighboring 619 
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bursts. 2D tilted Gaussian kernels were fitted to the local power spectrogram for each of these burst 620 

candidates, centered at the local maximum (Lundqvist et al., 2016). The frequency center, frequency 621 

spread, temporal center, temporal spread and the frequency modulation angle were fitted for each 622 

Gaussian kernel (i.e., individual burst). The temporal duration (lifetime) of an LFP burst was defined by 623 
the full-width-at-half-maximum (FWHM) of each fitted Gaussian kernel. The inter-burst interval was 624 

defined as the temporal distance between peak power in each consecutive pair of bursts in the same 625 

frequency band within the same electrode. Bursts of short length (< 1 cycle), small frequency spread 626 

(< 1 SD) or with saturated LFP signals were excluded from further analysis. 627 

 628 

Burst-field coupling 629 

Burst-field coupling was determined using the time of peak power in relation to the phases (n = 20 phase 630 

bins) of ongoing lower-frequency oscillations. Phases were estimated by convolving the LFP with 631 
frequency-dependent Hanning-windowed complex sinusoids (logarithmic frequencies from 2 to 128 Hz, 632 

kernel width of 3 cycles) after removing phase-locked event related potentials (ERPs). To compare the 633 

phase locking of LFP bursts in each task epoch and across each numerosity condition, the phase 634 

coherency at the target frequency was estimated with the complex average 𝑀 across 𝑛 samples: 635 

𝑀 =
1
𝑛% 𝑒!"!

#

$%&
 636 

The preferred phase was represented by the argument of complex average 𝑀. Statistical testing was 637 

performed for each electrode by comparing the mean vector length |𝑀| with a null distribution created by 638 

randomly shuffling the association of single-trial spike trains and corresponding LFP traces (n = 1000 639 

repetitions, p < 0.05). 640 

 641 

Burst probability 642 

For each frequency band, the probability of burst occurrence at each time point was estimated with 643 

incidence-accumulation: the time interval covered by each burst was transformed into a binary step 644 

function, which was summed and averaged across trials. Trial numbers were balanced for all sample and 645 
distractor numerosities by stratifying to the smallest number of correct trials across all conditions. The 646 

stratification was repeated 25 times, and the mean burst probability was calculated. The time course of 647 

burst probabilities was then smoothed with a 150 ms Gaussian window for visualization. 648 

Sensory-triggered beta bursts were considered present if the beta burst probability during the first 200 ms 649 

after sample and distractor numerosity presentation exceeded 2 SD above the mean across the entire 650 

trial for at least 10 ms. 651 
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To quantify the modulation of burst probability by numerosity, a sliding window ANOVA (200 ms width, 652 

20 ms steps) was performed for each sample and distractor numerosity. 653 

 654 

Multi-unit activity 655 

To separate multi-unit activity (MUA) from noise, we fitted a Gaussian mixture model to the probability 656 

density function of all recorded threshold crossing amplitudes at each electrode using: 657 

𝑝(𝑥) =%𝑝!𝛷!(𝑥)
$

!%&

 658 

𝛷𝑖(𝑥) =
1

$2𝜋𝜎𝑖2
𝑒
−
(𝑥−𝜇𝑖)

2
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The fitting of parameters 𝑝𝑖, 𝜇𝑖, 𝜎𝑖 was achieved by maximizing the posterior probability of each data point 660 

belonging to its assigned cluster. The number of components 𝑘 was fitted using goodness of fit (Akaike 661 

information criterion, AIC). The Gaussian component with the smallest amplitude was taken as the noise 662 

distribution. All spikes with amplitudes exceeding 1.96 SD above the mean of the noise distribution were 663 

taken as MUA. Electrodes with MUA were included in further analysis if the average spike rate across 664 

trials was larger than 1 spike/s and the spike rate was significantly modulated during the trial (one-way 665 

ANOVA across pre-sample, sample, first memory, distractor, and second memory epoch; evaluated at 666 
p < 0.05). 667 

MUA spike rate inside and outside of bursts was calculated using 668 

𝑟𝑖𝑛 =
𝑛𝑖𝑛
𝑡𝑏𝑢𝑟𝑠𝑡

; 	𝑟𝑜𝑢𝑡 =
𝑛𝑜𝑢𝑡

𝑡𝑎𝑙𝑙−𝑡𝑏𝑢𝑟𝑠𝑡
 669 

where 𝑛𝑖𝑛 and 𝑛𝑜𝑢𝑡 are the number of spikes inside and outside of bursts, 𝑡𝑏𝑢𝑟𝑠𝑡 is the lifetime of the burst 670 

and 𝑡𝑎𝑙𝑙 is the trial length. MUA spike rates were then transformed to logarithmic scale to obtain a normal 671 

distribution for statistical testing. 672 

 673 

Spike-field locking 674 

Spike field locking was measured using the instantaneous LFP phase at each spike time. To estimate the 675 

instantaneous phase of each spike, a 1 s LFP segment centered around each spike was convolved with 676 

frequency-dependent Hanning-windowed complex sinusoids (logarithmic frequencies from 2 to 128 Hz, 677 

kernel width of 3 cycles). The instantaneous phase 𝜑 of each spike is the argument of the complex 678 

Fourier coefficients. Pairwise phase consistency (Vinck et al., 2010) was determined using: 679 
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𝑝𝑝𝑐 =
(∑ cos	(𝜑$)#

$%& )8 + (∑ sin	(𝜑$)#
$%& )8 − 𝑛

𝑛(𝑛 − 1)  680 

where 𝑛 is the number of observations (i.e., spikes). For time-resolved analyses, we used a sliding 681 

window of 500 ms width and 250 ms steps. 682 

 683 

Neuronal information 684 

To quantify the information about the sample or distractor numerosity carried by MUA or burst probability, 685 

we calculated the percentage of explained variance (ω2 PEV) (Buschman et al., 2011) using 686 

ω2	PEV	 =
𝑆𝑆𝑔𝑟𝑜𝑢𝑝 − 𝑑𝑓 × 𝑀𝑆𝐸

𝑆𝑆𝑎𝑙𝑙 + 𝑀𝑆𝐸
 687 

where 𝑑𝑓 is the degrees of freedom, 𝑀𝑆𝐸 is the mean squared error and 𝑆𝑆 is the sum of squares (all 688 

from ANOVA). Sample and distractor PEV were calculated independently for each electrode with a sliding 689 

window of 200 ms width and 20 ms steps. 690 

 691 

Spatial clustering of LFP burst patterns 692 

The similarity of LFP burst patterns was determined by agglomerative hierarchical clustering as 693 

implemented in MATLAB. Burst probability covariances were calculated for each recording site pair using 694 
the mean gamma and beta burst probability at each site across all recording sessions and assembled into 695 

covariance matrices. Trial numbers were balanced for all sample and distractor numerosities as described 696 

above. The clustering algorithm then iteratively merged sites with higher covariance together, until all 697 

sites were grouped into a single cluster. This resulted in a tree-structured representation (dendrogram) of 698 

the covariance matrix. By descending the dendrogram and cutting the tree at each node, the covariance 699 

structure was separated into maximally 𝑛 non-overlapping clusters (i.e., branches). 700 

We determined the optimal number of clusters 𝑛 based on split-half reliability. Each session was 701 

randomly split into two halves after balancing the number of trials for each numerosity. The clustering 702 

algorithm was run independently on each of the split-halves and terminated at varying numbers of 703 

clusters (n = 1 to 5). Cluster labeling (assignment) was then compared between each pair of split-halves. 704 

This process was repeated 100 times, and the proportion of sites labelled consistently across split-halves 705 

was considered as the clustering reliability. To determine statistical significance, we generated a null 706 

distribution by shuffling across recording sites 10 times for each split-half, leading to 1000 (100 x 10) 707 

samples. 708 

 709 
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Granger causality 710 

We calculated bivariate Granger causality (Granger, 1969) as implemented in Fieldtrip using 711 

𝐺𝐶;→=(>) = ln	

⎝

⎛ 𝑝𝑜𝑤=(𝜔)

𝑝𝑜𝑤=(𝜔) − P𝛴;; −
𝛴=;8
𝛴==

R S𝐻=;(𝜔)S
8

⎠

⎞ 712 

where 𝐺𝐶;→=(>) is the Granger causality from signal 𝑥 to signal 𝑦 at frequency	𝜔, 𝑝𝑜𝑤=(𝜔) is the power of 713 

signal 𝑦 at frequency 𝜔, 𝛴;; and 𝛴== are the noise variances of signal 𝑥 and 𝑦, 𝛴=; is the noise covariance 714 

in the auto-regressive model between signal 𝑥 and 𝑦, and 𝐻=;(𝜔) is the spectral transfer matrix. 715 

For block-wise conditional Granger causality (Chen et al., 2006) between PFC clusters and VIP, we used 716 

𝐺𝐶;→=|[;=](>) = ln
var(𝜀′=,C)
var(𝜀=,C)

 717 

where 𝜀′=,C is the residual of the reduced autoregressive model predicting 𝑦 with history of all other 718 

variables except of 𝑥, and 𝜀=,C is the residual of the full vector model including 𝑥. We grouped PFC 719 

electrodes by the cluster they were assigned to and calculated the GC between each pair of 720 

simultaneously recorded clusters in each session. 721 

 722 

Burst occupancy 723 

We defined the proportion of trial time covered by bursts as the burst occupancy (OCP) of a trial (Seedat 724 

et al., 2020) using 725 

𝑂𝐶𝑃 =
𝑛𝑡DEFGC
𝑛𝑡HII

 726 

where 𝑛𝑡DEFGC is the number of time points covered by burst and 𝑛𝑡𝑎𝑙𝑙 is the overall number of time points 727 

across the whole trial. OCP standard deviation was calculated with a sliding window of 20 trials width and 728 

varying step size depending on the length of the session (n = 100 steps). 729 

The correlation between OCP and task accuracy was calculated by comparing the OCP between correct 730 
and error trials using a paired t-Test. The resulting t-statistic of each electrode was used to index the 731 

strength of the correlation. The correlation between OCP and reaction time was calculated using Pearson 732 

correlation, including only correct match trials. The correlation coefficient of each electrode was used to 733 

index the strength of the correlation.  734 
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Data availability 735 

Raw data are available on request from the authors. Source data are provided with this paper. 736 

 737 

Code availability 738 

Code is available on request from the authors.  739 



 36 

References 740 

Aoi, M. C., Mante, V., & Pillow, J. W. (2020). Prefrontal cortex exhibits multidimensional dynamic 741 
encoding during decision-making. Nature Neuroscience, 23(11), 1410-1420. 742 
https://doi.org/10.1038/s41593-020-0696-5  743 

Badre, D., & D'Esposito, M. (2007). Functional Magnetic Resonance Imaging Evidence for a Hierarchical 744 
Organization of the Prefrontal Cortex. Journal of Cognitive Neuroscience, 19(12), 2082-2099. 745 
https://doi.org/10.1162/jocn.2007.19.12.2082  746 

Badre, D., & D'Esposito, M. (2009). Is the rostro-caudal axis of the frontal lobe hierarchical? Nature 747 
Reviews Neuroscience, 10(9), 659-669. https://doi.org/10.1038/nrn2667  748 

Bandyopadhyay, S., Shamma, S. A., & Kanold, P. O. (2010). Dichotomy of functional organization in the 749 
mouse auditory cortex. Nature Neuroscience, 13(3), 361-368. https://doi.org/10.1038/nn.2490  750 

Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt 751 
auf Grund des Zellenbaues. Barth.  752 

Buschman, T. J., Siegel, M., Roy, J. E., & Miller, E. K. (2011). Neural substrates of cognitive capacity 753 
limitations. Proceedings of the National Academy of Sciences, 108(27), 11252-11255. 754 
https://doi.org/10.1073/pnas.1104666108  755 

Buzsáki, G., Anastassiou, C. A., & Koch, C. (2012). The origin of extracellular fields and currents-EEG, 756 
ECoG, LFP and spikes. Nature Reviews Neuroscience, 13(6), 407-420. 757 
https://doi.org/10.1038/nrn3241  758 

Canolty, R. T., & Knight, R. T. (2010). The functional role of cross-frequency coupling. Trends in Cognitive 759 
Sciences, 14(11), 506-515. https://doi.org/10.1016/J.TICS.2010.09.001  760 

Chapeton, J. I., Wittig, J. H., Inati, S. K., & Zaghloul, K. A. (2022). Micro-scale functional modules in the 761 
human temporal lobe. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-34018-762 
w  763 

Chen, Y., Bressler, S. L., & Ding, M. (2006). Frequency decomposition of conditional Granger causality 764 
and application to multivariate neural field potential data. Journal of neuroscience methods, 765 
150(2), 228-237. https://doi.org/10.1016/J.JNEUMETH.2005.06.011  766 

Eisenkolb, V. M., Held, L. M., Utzschmid, A., Lin, X.-X., Krieg, S. M., Meyer, B., Gempt, J., & Jacob, S. N. 767 
(2023). Human acute microelectrode array recordings with broad cortical access, single-unit 768 
resolution, and parallel behavioral monitoring. Cell Reports, 42(5). 769 
https://doi.org/10.1016/j.celrep.2023.112467  770 

Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 771 
392(6676), 598-601. https://doi.org/10.1038/33402  772 

Fedorenko, E., Behr, M. K., & Kanwisher, N. (2011). Functional specificity for high-level linguistic 773 
processing in the human brain. Proceedings of the National Academy of Sciences, 108(39), 774 
16428-16433. https://doi.org/10.1073/pnas.1112937108  775 

Fedorenko, E., Duncan, J., & Kanwisher, N. (2013). Broad domain generality in focal regions of frontal 776 
and parietal cortex. Proceedings of the National Academy of Sciences, 110(41), 16616-16621. 777 
https://doi.org/10.1073/pnas.1315235110  778 

Fodor, J. A. (1983). The modularity of mind. MIT press. https://doi.org/10.7551/mitpress/4737.001.0001  779 
Gordon, E. M., Chauvin, R. J., Van, A. N., Rajesh, A., Nielsen, A., Newbold, D. J., Lynch, C. J., Seider, N. 780 

A., Krimmel, S. R., & Scheidter, K. M. (2023). A somato-cognitive action network alternates with 781 
effector regions in motor cortex. Nature, 617(7960), 351-359. https://doi.org/10.1038/s41586-023-782 
05964-2  783 

Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral methods. 784 
Econometrica: journal of the Econometric Society, 424-438. https://doi.org/10.2307/1912791  785 

Hanganu-Opatz, I. L., Klausberger, T., Sigurdsson, T., Nieder, A., Jacob, S. N., Bartos, M., Sauer, J.-F., 786 
Durstewitz, D., Leibold, C., & Diester, I. (2023). Resolving the prefrontal mechanisms of adaptive 787 
cognitive behaviors: A cross-species perspective. Neuron, 111(7), 1020-1036. 788 
https://doi.org/10.1016/j.neuron.2023.03.017  789 

Harvey, B. M., Klein, B. P., Petridou, N., & Dumoulin, S. O. (2013). Topographic Representation of 790 
Numerosity in the Human Parietal Cortex. Science, 341(6150), 1123-1126. 791 
https://doi.org/10.1126/science.1239052  792 

https://doi.org/10.1038/s41593-020-0696-5
https://doi.org/10.1162/jocn.2007.19.12.2082
https://doi.org/10.1038/nrn2667
https://doi.org/10.1038/nn.2490
https://doi.org/10.1073/pnas.1104666108
https://doi.org/10.1038/nrn3241
https://doi.org/10.1016/J.TICS.2010.09.001
https://doi.org/10.1038/s41467-022-34018-w
https://doi.org/10.1038/s41467-022-34018-w
https://doi.org/10.1016/J.JNEUMETH.2005.06.011
https://doi.org/10.1016/j.celrep.2023.112467
https://doi.org/10.1038/33402
https://doi.org/10.1073/pnas.1112937108
https://doi.org/10.1073/pnas.1315235110
https://doi.org/10.7551/mitpress/4737.001.0001
https://doi.org/10.1038/s41586-023-05964-2
https://doi.org/10.1038/s41586-023-05964-2
https://doi.org/10.2307/1912791
https://doi.org/10.1016/j.neuron.2023.03.017
https://doi.org/10.1126/science.1239052


 37 

Hubel, D. H., & Wiesel, T. N. (1977). Ferrier lecture-Functional architecture of macaque monkey visual 793 
cortex. Proceedings of the Royal Society of London. Series B. Biological Sciences, 198(1130), 1-794 
59. https://doi.org/10.1098/rspb.1977.0085  795 

Humphries, C., Liebenthal, E., & Binder, J. R. (2010). Tonotopic organization of human auditory cortex. 796 
NeuroImage, 50(3), 1202-1211. https://doi.org/10.1016/j.neuroimage.2010.01.046  797 

Jacob, S. N., Hähnke, D., & Nieder, A. (2018). Structuring of Abstract Working Memory Content by 798 
Fronto-parietal Synchrony in Primate Cortex. Neuron, 99(3), 588-597.e585. 799 
https://doi.org/10.1016/j.neuron.2018.07.025  800 

Jacob, S. N., & Nieder, A. (2014). Complementary roles for primate frontal and parietal cortex in guarding 801 
working memory from distractor stimuli. Neuron, 83(1), 226-237. 802 
https://doi.org/10.1016/j.neuron.2014.05.009  803 

Jacob, S. N., Stalter, M., & Nieder, A. (2016). Cell-type-specific modulation of targets and distractors by 804 
dopamine D1 receptors in primate prefrontal cortex. Nature Communications, 7(1), 1-11. 805 
https://doi.org/10.1038/ncomms13218  806 

Jung, J., Lambon Ralph, M. A., & Jackson, R. L. (2022). Subregions of DLPFC Display Graded yet 807 
Distinct Structural and Functional Connectivity. The Journal of Neuroscience, 42(15), 3241-3252. 808 
https://doi.org/10.1523/jneurosci.1216-21.2022  809 

Kaas, J. H. (1997). Topographic maps are fundamental to sensory processing. Brain research bulletin, 810 
44(2), 107-112. https://doi.org/10.1016/S0361-9230(97)00094-4  811 

Kanwisher, N. (2010). Functional specificity in the human brain: A window into the functional architecture 812 
of the mind. Proceedings of the National Academy of Sciences, 107(25), 11163-11170. 813 
https://doi.org/10.1073/pnas.1005062107  814 

Kanwisher, N., Mcdermott, J., & Chun, M. M. (1997). The Fusiform Face Area: A Module in Human 815 
Extrastriate Cortex Specialized for Face Perception. The Journal of Neuroscience, 17(11), 4302-816 
4311. https://doi.org/10.1523/jneurosci.17-11-04302.1997  817 

Karvat, G., Alyahyay, M., & Diester, I. (2021). Spontaneous activity competes with externally evoked 818 
responses in sensory cortex. Proceedings of the National Academy of Sciences of the United 819 
States of America, 118(25). https://doi.org/10.1073/pnas.2023286118  820 

Katzner, S., Nauhaus, I., Benucci, A., Bonin, V., Ringach, D. L., & Carandini, M. (2009). Local Origin of 821 
Field Potentials in Visual Cortex. Neuron, 61(1), 35-41. 822 
https://doi.org/10.1016/j.neuron.2008.11.016  823 

Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human 824 
prefrontal cortex. Science, 302(5648), 1181-1185. https://doi.org/10.1126/science.1088545  825 

Lashley, K. S. (1950). In search of the engram.  826 
Liebe, S., Hoerzer, G. M., Logothetis, N. K., & Rainer, G. (2012). Theta coupling between V4 and 827 

prefrontal cortex predicts visual short-term memory performance. Nature Neuroscience, 15(3), 828 
456-462. https://doi.org/10.1038/nn.3038  829 

Lin, X.-X., Nieder, A., & Jacob, S. N. (2023). The neuronal implementation of representational geometry 830 
in primate prefrontal cortex. Science Advances, 9(50). https://doi.org/10.1126/sciadv.adh8685  831 

Lindén, H., Tetzlaff, T., Potjans, T. C., Pettersen, K. H., Grün, S., Diesmann, M., & Einevoll, G. T. (2011). 832 
Modeling the spatial reach of the LFP. Neuron, 72(5), 859-872. 833 
https://doi.org/10.1016/j.neuron.2011.11.006  834 

Lundqvist, M., Brincat, S. L., Rose, J., Warden, M. R., Buschman, T. J., Miller, E. K., & Herman, P. 835 
(2023). Working memory control dynamics follow principles of spatial computing. Nature 836 
Communications, 14(1), 1429. https://doi.org/10.1038/s41467-023-36555-4  837 

Lundqvist, M., Herman, P., Warden, M. R., Brincat, S. L., & Miller, E. K. (2018). Gamma and beta bursts 838 
during working memory readout suggest roles in its volitional control. Nature Communications, 839 
9(1). https://doi.org/10.1038/s41467-017-02791-8  840 

Lundqvist, M., Rose, J., Herman, P., Brincat, Scott L. L., Buschman, Timothy J. J., & Miller, Earl K. K. 841 
(2016). Gamma and Beta Bursts Underlie Working Memory. Neuron, 90(1), 152-164. 842 
https://doi.org/10.1016/j.neuron.2016.02.028  843 

Mansouri, F. A., Koechlin, E., Rosa, M. G. P., & Buckley, M. J. (2017). Managing competing goals — a 844 
key role for the frontopolar cortex. Nature Reviews Neuroscience, 18(11), 645-657. 845 
https://doi.org/10.1038/nrn.2017.111  846 

https://doi.org/10.1098/rspb.1977.0085
https://doi.org/10.1016/j.neuroimage.2010.01.046
https://doi.org/10.1016/j.neuron.2018.07.025
https://doi.org/10.1016/j.neuron.2014.05.009
https://doi.org/10.1038/ncomms13218
https://doi.org/10.1523/jneurosci.1216-21.2022
https://doi.org/10.1016/S0361-9230(97)00094-4
https://doi.org/10.1073/pnas.1005062107
https://doi.org/10.1523/jneurosci.17-11-04302.1997
https://doi.org/10.1073/pnas.2023286118
https://doi.org/10.1016/j.neuron.2008.11.016
https://doi.org/10.1126/science.1088545
https://doi.org/10.1038/nn.3038
https://doi.org/10.1126/sciadv.adh8685
https://doi.org/10.1016/j.neuron.2011.11.006
https://doi.org/10.1038/s41467-023-36555-4
https://doi.org/10.1038/s41467-017-02791-8
https://doi.org/10.1016/j.neuron.2016.02.028
https://doi.org/10.1038/nrn.2017.111


 38 

Mccandliss, B. D., Cohen, L., & Dehaene, S. (2003). The visual word form area: expertise for reading in 847 
the fusiform gyrus. Trends in Cognitive Sciences, 7(7), 293-299. https://doi.org/10.1016/s1364-848 
6613(03)00134-7  849 

Miller, E. K., Lundqvist, M., & Bastos, A. M. (2018). Working Memory 2.0. Neuron, 100(2), 463-475. 850 
https://doi.org/10.1016/J.NEURON.2018.09.023  851 

Moca, V. V., Bârzan, H., Nagy-Dăbâcan, A., & Mureșan, R. C. (2021). Time-frequency super-resolution 852 
with superlets. Nature Communications 2021 12:1, 12(1), 1-18. https://doi.org/10.1038/s41467-853 
020-20539-9  854 

Mongillo, G., Barak, O., & Tsodyks, M. (2008). Synaptic Theory of Working Memory. Science, 319(5869), 855 
1543-1546. https://doi.org/10.1126/SCIENCE.1150769  856 

Nieder, A., Freedman, D. J., & Miller, E. K. (2002). Representation of the quantity of visual items in the 857 
primate prefrontal cortex. Science, 297(5587), 1708-1711. 858 
https://doi.org/10.1126/science.1072493  859 

Ostojic, S., & Fusi, S. (2024). Computational role of structure in neural activity and connectivity. Trends in 860 
Cognitive Sciences, 28(7), 677-690. https://doi.org/10.1016/j.tics.2024.03.003  861 

Penfield, W., & Boldrey, E. (1937). Somatic motor and sensory representation in the cerebral cortex of 862 
man as studied by electrical stimulation. Brain, 60(4), 389-443. 863 
https://doi.org/10.1093/brain/60.4.389  864 

Pesaran, B., Nelson, M. J., & Andersen, R. A. (2008). Free choice activates a decision circuit between 865 
frontal and parietal cortex. Nature, 453(7193), 406-409. https://doi.org/10.1038/nature06849  866 

Petrides, M., & Pandya, D. N. (1984). Projections to the frontal cortex from the posterior parietal region in 867 
the rhesus monkey. Journal of Comparative Neurology, 228(1), 105-116. 868 
https://doi.org/10.1002/cne.902280110  869 

Petrides, M., & Pandya, D. N. (1999). Dorsolateral prefrontal cortex: comparative cytoarchitectonic 870 
analysis in the human and the macaque brain and corticocortical connection patterns. European 871 
Journal of Neuroscience, 11(3), 1011-1036. https://doi.org/10.1046/j.1460-9568.1999.00518.x  872 

Rapan, L., Froudist-Walsh, S., Niu, M., Xu, T., Zhao, L., Funck, T., Wang, X.-J., Amunts, K., & Palomero-873 
Gallagher, N. (2023). Cytoarchitectonic, receptor distribution and functional connectivity analyses 874 
of the macaque frontal lobe. eLife, 12, e82850. https://doi.org/10.7554/eLife.82850  875 

Rigotti, M., Barak, O., Warden, M. R., Wang, X.-J., Daw, N. D., Miller, E. K., & Fusi, S. (2013). The 876 
importance of mixed selectivity in complex cognitive tasks. Nature, 497(7451), 585-590. 877 
https://doi.org/10.1038/nature12160  878 

Riley, M. R., Qi, X.-L., Zhou, X., & Constantinidis, C. (2018). Anterior-posterior gradient of plasticity in 879 
primate prefrontal cortex. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-880 
06226-w  881 

Salazar, R. F., Dotson, N. M., Bressler, S. L., & Gray, C. M. (2012). Content-Specific Fronto-Parietal 882 
Synchronization During Visual Working Memory. Science, 338(6110), 1097-1100. 883 
https://doi.org/10.1126/science.1224000  884 

Schreiner, C. E., Read, H. L., & Sutter, M. L. (2000). Modular organization of frequency integration in 885 
primary auditory cortex. Annual Review of Neuroscience, 23(1), 501-529. 886 
https://doi.org/10.1146/annurev.neuro.23.1.501  887 

Seedat, Z. A., Quinn, A. J., Vidaurre, D., Liuzzi, L., Gascoyne, L. E., Hunt, B. A., O’neill, G. C., 888 
Pakenham, D. O., Mullinger, K. J., & Morris, P. G. (2020). The role of transient spectral ‘bursts’ in 889 
functional connectivity: A magnetoencephalography study. NeuroImage, 209, 116537. 890 
https://doi.org/10.1016/j.neuroimage.2020.116537  891 

Siegel, M., Warden, M. R., & Miller, E. K. (2009). Phase-dependent neuronal coding of objects in short-892 
term memory. Proceedings of the National Academy of Sciences of the United States of America, 893 
106(50), 21341-21346. https://doi.org/10.1073/pnas.0908193106  894 

Steel, A., Silson, E. H., Garcia, B. D., & Robertson, C. E. (2024). A retinotopic code structures the 895 
interaction between perception and memory systems. Nature Neuroscience, 27(2), 339-347. 896 
https://doi.org/10.1038/s41593-023-01512-3  897 

Stokes, M. G. (2015). 'Activity-silent' working memory in prefrontal cortex: A dynamic coding framework. 898 
Trends in Cognitive Sciences, 19(7), 394-405. https://doi.org/10.1016/j.tics.2015.05.004  899 

Talbot, S., & Marshall, W. (1941). Physiological studies on neural mechanisms of visual localization and 900 
discrimination. American Journal of Ophthalmology, 24(11), 1255-1264. 901 
https://doi.org/10.1016/S0002-9394(41)91363-6  902 

https://doi.org/10.1016/s1364-6613(03)00134-7
https://doi.org/10.1016/s1364-6613(03)00134-7
https://doi.org/10.1016/J.NEURON.2018.09.023
https://doi.org/10.1038/s41467-020-20539-9
https://doi.org/10.1038/s41467-020-20539-9
https://doi.org/10.1126/SCIENCE.1150769
https://doi.org/10.1126/science.1072493
https://doi.org/10.1016/j.tics.2024.03.003
https://doi.org/10.1093/brain/60.4.389
https://doi.org/10.1038/nature06849
https://doi.org/10.1002/cne.902280110
https://doi.org/10.1046/j.1460-9568.1999.00518.x
https://doi.org/10.7554/eLife.82850
https://doi.org/10.1038/nature12160
https://doi.org/10.1038/s41467-018-06226-w
https://doi.org/10.1038/s41467-018-06226-w
https://doi.org/10.1126/science.1224000
https://doi.org/10.1146/annurev.neuro.23.1.501
https://doi.org/10.1016/j.neuroimage.2020.116537
https://doi.org/10.1073/pnas.0908193106
https://doi.org/10.1038/s41593-023-01512-3
https://doi.org/10.1016/j.tics.2015.05.004
https://doi.org/10.1016/S0002-9394(41)91363-6


 39 

Tye, K. M., Miller, E. K., Taschbach, F. H., Benna, M. K., Rigotti, M., & Fusi, S. (2024). Mixed selectivity: 903 
Cellular computations for complexity. Neuron. https://doi.org/10.1016/j.neuron.2024.04.017  904 

Vinck, M., van Wingerden, M., Womelsdorf, T., Fries, P., & Pennartz, C. M. (2010). The pairwise phase 905 
consistency: a bias-free measure of rhythmic neuronal synchronization. NeuroImage, 51(1), 112-906 
122. https://www.sciencedirect.com/science/article/pii/S1053811910000959?via%3Dihub  907 

Wang, S., Falcone, R., Richmond, B., & Averbeck, B. B. (2023). Attractor dynamics reflect decision 908 
confidence in macaque prefrontal cortex. Nature Neuroscience, 26(11), 1970-1980. 909 
https://doi.org/10.1038/s41593-023-01445-x  910 

Wang, X. J. (2010). Neurophysiological and computational principles of cortical rhythms in cognition. 911 
Physiological reviews, 90(3), 1195-1268. https://doi.org/10.1152/physrev.00035.2008  912 

Xie, Y., Hu, P., Li, J., Chen, J., Song, W., Wang, X.-J., Yang, T., Dehaene, S., Tang, S., Min, B., & Wang, 913 
L. (2022). Geometry of sequence working memory in macaque prefrontal cortex. Science, 914 
375(6581), 632-639. https://doi.org/10.1126/science.abm0204  915 

https://doi.org/10.1016/j.neuron.2024.04.017
https://www.sciencedirect.com/science/article/pii/S1053811910000959?via%3Dihub
https://doi.org/10.1038/s41593-023-01445-x
https://doi.org/10.1152/physrev.00035.2008
https://doi.org/10.1126/science.abm0204

